Introduction To Python Programming
lll: Numpy, SciPy and Matplotlib

Jan Moren, SCDA M

OIST

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY
UL E SR R IPANE e 2

* NumPYy:

* SciPy:

* Matplotlib:

The Libraries

Base library. Fast arrays and matrices,
FFT, linear algebra, dates, random numbers, etc

Uses NumPy. Large collection of high-
quality implementations of numerical
algorithms: stats, ODE solvers, integration,
optimization, signal processing...

Data visualization for Nympy and Scipy. SY™FY:
2-D and 3-D plots, animations, and Pandas:
Interactive visualizations.

scikit-learn:

Symbolic
computation
Time series
analysis

Machine
learning

OIST

A quick example

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

x = np.linspace(0,10,100)
y = np.random.normal(x/10, 0.2)
p = stats.linregress(x,y)

plt.figure()

plt.plot(x,y, 'r.', label='samples')

plt.plot(x, x*p.slopetp.intercept,
"k", label="fit")

plt.legend()

1.2

1.0~

0.8

0.6

0.4 1

0.2 1

0.0 1

* samples
— fit

T
10

A quick example

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

x = np.linspace(0,10,100)
y = np.random.normal(x/10, 0.2)
p = stats.linregress(x,y)

plt.figure()

plt.plot(x,y, 'r.', label='samples')

plt.plot(x, x*p.slopetp.intercept,
"k", label="fit")

plt.legend()

Import numpy, name it “np”
Import matplotlib.pyplot, name it “plt”

* We often rename modules for ease of use;
“‘np” and “plt” are standard names.

Import the “stats” module from scipy

OIST

A quick example

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

np.linspace(0,10,100)
np.random.normal (x/10, 0.2)

X
y

stats.linregress(x,y)

P

plt.figure()

plt.plot(x,y, 'r.', label='samples')

plt.plot(x, x*p.slopetp.intercept,
"k", label="fit")

plt.legend()

Get an array of 100 numbers from O
to 10

Get an array of normal random
numbers, with the mean at the “x/10”
values, and variance 0.2

Linear regression to x and y

OIST

A quick example

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

np.linspace(0,10,100)
np.random.normal (x/10, 0.2)

X
y

p = stats.linregress(x,y)

plt.figure()
plt.plot(x,y, 'r.', label='samples')
plt.plot(x, x*p.slopetp.intercept,

"k", label="fit")

plt.legend()

Create a figure to plot into

Plot the (x,y) points in red ("r") dots (".”)
with label “samples”

Plot a line with slope p.slope and
and zero at p.intercept, name it “fit”

Add the legend to the plot

OIST

Arrays

The base Numpy data structure is the array:

1-d vector from a list
a = np.array([1,2,3])

2-d array from a list of lists
=n

#
b p.array([LL1,2]1, [3,4]1])
b
r

array(LL1, 21,
[3, 411)

np.outer([1,2,3]1, [1,2,3])
np.zeros_like(a)+2

a
b
a*b # elementwise

[2’ 4} 6]’
[4, 8, 121,
[6, 12, 1811

array (L

Arrays

» Stored as a single memory area

* All elements are the same type
(there’s an exception...)

* very efficient, compatible with C
and Fortran arrays

e array Is an iterable:
e can convert to/from lists
e can loop over the elements

OIST

10

Arrays

The base Numpy data structure is the array:

1-d vector from a list
= np.array([1,2,31) Why Arrays?
2-d array from a list of lists . o
b = np.array([[1,2], [3,4]1]) * The storage is very efficient
b
array([[1, 21, * They are fast
L3, 41D * You can quickly operate on all
a = np.outer([1,2,31, [1,2,3]) elements in an array
b = np.zeros_like(a)+2 :
P (@) * You can treat them as matrices
a*b # elementwise « same as Matlab matrices
array([[2, 4, 61, * many high-performance operations
[4, 8, 121, available
[6, 12, 181D

OIST 11

Array layout and shapes

b = np.arange(1,10).reshape(3,3)

b.size # nr elements
9

b.ndim # dimensions
2

b.shape # size 1n each dimension
(3, 3)

b.reshape(2,4)# ERROR 2x4 != 9

x=np.ravel(b)
array(L 1, 2, 3, 4, 5, 6, 7, 8, 9])

b.data= 1

O

INn memory:

2

3

4

b.shapel[1]

/

N

‘\‘

©
= 23
))
=2 (g 5 ¢
T ~J \
<)
¥ 789
0
b[1,2]

AN

row column

12

Array layout and shapes

INn memory:
b = np.arange(1,10).reshape(3,3) b.data= 1 2 3 4 5 6 7 8 O
b.size # nr elements
9
b.ndim # dimensions compare with list:
2
b.shape # size 1n each dimension
(3, 3) my_list= x|
b.reshape(2,4)# ERROR 2x4 != 9 ‘/‘//// / j l X
x=np.ravel(b) 7 8 9
array(L 1, 2, 3, 4, 5, 6, 7, 8, 9])

Arrays and matrices

What about ‘matrix’?

* Really the same as an array:

e Same representation

* mostly same methods

* very cheap to convert with
"asmatrix”

* But, multiplication is a matrix
multiplication, not elementwise

e Also, can use MATLAB-like init

Most code uses array in practice

MATLAB-like initialization
m =np.mat('1, 2; 3, 4")

m1l
m2

m1+*m2

matrix([[12.
[24.
[36.

a.dot(b)

matrix([[12.
[24.
[36.

12.
24 .
36.

12.
24 .
36.

np.asmatrix(a)
np.asmatrix(b)

dot product

12.1,
24.1],
36.11)

also dot product

12.1,
24.1],
36.11)

OIST

14

Create Arrays

Create arrays:
a = np.array(LL1,2,3]1, [2,3,4]1]1)
b = np.ones_like(a) # same shape with ‘1’
c = np.zeros((2,3,4)) # 3d array of ‘0’
I = np.eye(3) # identity
I
array(L[1., 0., 0.1,
(0., 1., 0.1,
(0., @., 1.11)

you can specify the numerical type
i1a = np.ones((2,2), dtype=np.complex64)
1a
array(L[1.+0.3, 1.+0.3],
[1.4+0.3, 1.+0.3j]], dtype=complex64)

* give a sequence of elements
* create pre-filled array of specific
size

* Special array creation:
°* np.eye, np.diag, np.random ...
* many python modules can convert
to/from numpy arrays

* You can specify the data type

OIST

15

Array operations

* Many functions operate on the
elements of an array

* max(), min(), +, cumsum(), sin(),
conjugate(), round(), prod() ..

* You can set an axis for operations:

a.sum(axis=0):

axis: 1 >

a.0123 111123

1234 1234
3|57

* operations give you a new array

a = np.array([[1,2,3]1, [2,3,41D)

a.sum()

15
a.sum(axis=0) # operate along one axis

array([3, 5, 71)

np.log(a) # all can be called like this
array(L[0. , 0.69314, 1.09861],
[0.69314, 1.09861, 1.38629]11)
b = a.copy()
b.T # Transposition
array(LL1, 21,
[2, 3],
[3, 411)
b.dot(a.T) # dot product
array(L[14, 20],
[20, 2911)

OIST

16

Arrays: Broadcasting

Operations are elementwise:

a = np.array([[1,2,3]1, [2,3,41])

b = np.array([[9,8,7], [6,5,4]1]) 2 3 9 8|7
a+b + —
array([[10, 10, 10], 3.4 6154
[87 87 8]])

The operation happens on each pair of
elements in the two arrays

— the arrays have to be the same size

2+8

3+7

3+5

4+4

OIST

17

Arrays: Broadcasting

Operations are elementwise:
a = np.array([[1,2,31, [2,3,411) //57/””——//’51:::==§\‘§h\

b = np.array(L[9,8,7], [6,5,41]) 1 23 + 9 | 8| 7| _ |1+9 2+8 3+7
ari;S([U@’ 10, 10], 2 3 4 6 51| 4 - 2+6 | 3+5 4+4
[8, 8, 81D
What about this?
a = np.array([[1,2,3], [2,3,4]1]) a: sz ,,,,,,
b = 1 1023 T 141 2+1 3+1
2 L=
array([[2, 3, 4], 2134 vl v M 2+13+1 4+1
[3, 4, 511

Broadcasting fills in the single value into an array of the right size,
so that the elementwise operation can proceed.

OIST

Arrays: Broadcasting

Operations are elementwise:
a = np.array([[1,2,31, [2,3,41]) /*TT/”’——f//’51:::==§\‘§h\

b = np.array(LL9,8,71, [6,5,411) 1123] 9|87 _ [149)2+8)3+7
ari;S([U@’ 10, 10], 2|34 6 5 4 B 2+6|3+5|4+4
[8, 8, 81D
What about this?
a = np.array([[1,2,3], [2,3,411) a: b:
b =1 11213 T 141 241 3+1
atb + :i ***l‘*l**ﬁ =
array([[2, 3, 4], 2134 vl vl M 2+13+1 4+1
[3, 4, 511
And what about this? X
a :
a = np.array(L[1,2,3]1, [2,3,411)
b = np.array([1,9,1]) 11213 + 1M 12 (7 — 1+1/2+9 3+1
atb 23 4 W vY9v 2+1 3+9 4+
array([[2, 11, 41,
[3, 12, 511)

OIST

Find information

How to find out more

* lookfor(“text”) looks for the text
anywhere in numpy

* function? gives you documentation and
examples for a function in ipython

* np.info(function) IS another way to get
the same documentation

e Documentation:
https://numpy.org/doc/1.18/

np.lookfor("median”)
Search results for ’'median
numpy .median
Compute the median along the specified axis.
numpy . nanmedian

Compute the median along the specified axis, ...

numpy.quantile

Compute the g-th quantile of the data along ...

np.median?

Signature: np.median(a, axis=None, out=None, overw ...

Docstring:
Compute the median along the specified axis.

Returns the median of the array elements.
Parameters

a : array_like

Input array or object that can be converted to ...

OIST

22

Visualisation Example: sin()

calculate and plot sin(x) and sin(x/2)

* np.linspace(s,e,n) generates n points
between start and end

* plt.ion() for interactive mode

e figure(): use figsize (8,6 inches) and
dpi (128) to set the plot size.
« 8,6 inches x 128 dpi = 1024x768 pixels

* plt.plot():
* arrays with x and y coordinates
* set line width, color, markers etc.

import numpy as np
import matplotlib.pyplot as plt

X = np.linspace(@, 2*np.pi, 50) # 50 pts in [0..2*pi)

s1 = np.sin(x)
s2 = np.sin(x/2)
plt.ion() # interactive mode

plt.figure(figsize=(8,6), dpi=128)

plt.plot(x,s1,"b-", 1w=2) # lw=linewidth
plt.plot(x,s2, ".-", c="red”) # red dot-dash line

OIST

28

Visualisation Example: sin()

calculate and plot sin(x) and sin(x/2)

* plt.ion() for interactive mode

e figure(): use figsize (8,6 inches) and
dpi (128) to set the plot size.

plt.plot():
e arrays with x and y coordinates
* set line width, color, markers etc.

plt.xlabel() sets label for x axis

plt.savefig() saves figure to file

plt.show() shows plot if not interactive

plt.tight_layout() removes extra space

import numpy as np
import matplotlib.pyplot as plt

X = np.linspace(@, 2*np.pi, 50) # 50 pts in [0..2%pi)

s
sS2

plt.
plt.

plt.
plt.

plt.
plt.

plt.
plt.
plt.

np.sin(x)
np.sin(x/2)

ion() # interactive mode
figure(figsize=(8,6), dpi=128)

plot(x,s1,"b-", 1lw=2) # lw=linewidth
plot(x,s2, ".-", c="red"”) # red dot-dash line

xlabel ("angle)
ylabel ("awesomness™)

tight_layout() # remove extra space
savefig("awesome.png”) # svg, pdf, other formats
show() # show on screen

OIST

30

Array indexing

axis:

arrays are indexed:

Q
alrow, col, depth ...] a: ‘
v

1
1
56 7

* begins with 0
* negative counts from the end

* can also use the “list of lists” way
to index:

alrow][col][depth]

e a list as index:

* list of elements to pick in order
* creates a copy of the data

1

1

a = np.array([[1,2,3,4], [5,6,7,8]1])

alo, 0] # row, column from 0,0
alo][o] # same thing
al1] # single index=entire row

array([L 5, 6, 7, 81)

4

alo, -1] # -1 = last element

alo, [0,3,2]] # select elements

array([1, 4, 31)

OIST

31

Array slices

Slice: a “cut-out” piece of an array
 Slices are not copies
* specify slices with *’

[first elem:last elem+1]

56 7 8
al:3] = [0:3] # start of array:3
al2:] = [2:8] # 2:end of array
al:] =1[0:8] # all elements

a = np.arange(1,9)
array(L1, 2, 3, 4, 5, 6, 7, 8])

al2:4] # start:end+1
array(L3, 41)

al2] # 1 value
3

al[2:3] # 1-element array
array([L3]) # 2:3 1s DIFFERENT from 2!

b = np.array([[1,2,3,4], [5,6,7,8]1)

b[:, 1]
array(L2, 6]) # 1d array
b[:, 1:2]
array([[2], # 2d array
[611)

32

Array indexing

Using boolean indexes:

!“ ‘: !‘ ° . -
—_— . . 54 . ot . . ’
a = np.random.normal(size=1000) T R R
. . fe e et ® ety "N er, e . ®one
—) - . ey
X = np.arange(a.size) R T e IR KR
") R A T TR rid il 'f' W 1
].t o].Ot(X a r o) 2% 0.0 of0’y, --f’a'ft L 3“' . %or 1“- “l
S o| Gl T T R
% jl-.‘ ni. ..l.. 3 .) :I::...-' .
\‘.. 0 L «® 2oy * »° .'.'.J' . .ﬂ.
S5 -'.u*. I--..".'h_.] '.b.-.l:i:.':..:- ..:.ﬁ‘.'h.: ':'.}l.ll.?:' E
-1 @ -.l-' s Te ° 'f' o a Ll 4 :
e Yoe ! .-.--...'. l..r - ,
) " o *
2
3
ll) 2[‘)0 4[‘)0 6(‘)0 8(‘)0 lDIOO

Use a test to pick what values to use

For example: pick and plot values of
‘a’ that are greater than or equal to 0

Array indexing

Using boolean indexes:

a = np.random.normal (size=1000) oSt e e

* e 8. . o se e .
. ae 0y o 2% . 3 . v
_— r) - . . %0 .
x = np.arange(len(a)) s S T I
.

. .‘. ’: . ': “ ‘: . . ® ‘“c:

plt.plot(x, a, "r.") | i el R e e
B 7 0 8Ty K rta e i T et

apos = (a>=0) Fedirdd b, e g HE A

:h.-..'. lhl:.“. o l{-.'.l- 'l..ﬁ .--“|1l..é
array(L True, False, True, True, True .. af g e R R R YR
- l: s ° I. .e ey '... ... L N * . * .h. .l. ... *

 Compare each element in a.

* Return a new array with "True" or
"False" in each position.

Using boolean indexes:

Array indexing

a = np.random.normal(size=1000) Voot e
X = np.arange(len(a)) y g}aqé%aﬁ?éfgigﬁfﬁﬁﬁiﬂé‘
em o o, . o ‘ s ;::‘d“ o, s ““:
plt.plot(x, a, "r.") SRR T N
apos = (a>=0) | a0 Tt s
-'h-."...'4. 'h-.-l.."- $ ':"'.: ' .-—'-..' : -.:'d'h".‘.':'“:l'l-|.'=Ir.'..'E

array([L True, False, True, True, True .. e TR R N A A
™ e °y '.: .._|.' .l:_- P -:

Small example ## o :

b = np.random.randint(-5,5,8)

array([-2, 4, -3, 1, -1, 2, 1

bpos
b[bpos]
array([4, 1, 2, 1, 41)

(b>=0)

T T T T
200 400 600 800

41)

)

 Compare each element in a.

"False" in each position.

that are "True"

* Return a new array with "True" or

* A boolean index returns the elements

Using boolean

Array indexing

iIndexes:

a
X
P
a
arr

plt.plot(x[apos], alapos], "b.")

= np.arange(len(a)
1t.plot(x, a, "r.")
pos = (a>=0)

ay([True, False,

np.random.normal (size=1000)

. . N .
. “ t‘ o o . .
2 “ . “‘ o . ‘: “ - =® o . " .
PR ot ® .o o o .
* . s - "“-‘ e * t‘;::: “‘t :“g ': LT ‘;‘“‘.
1{ g o eb it N o Lt [DAY
. ““t a" S’ -t oo J‘gﬁl‘:z:' 2% .ot “{{:
s . 2 e 3 - % FLETS . [) .
f‘"" i"“.‘.{\ LY W ;’,‘a'f:‘y “‘H . ."‘:- a:hl': ‘g‘
0- ';ti"hq, "?‘ e ;‘:’ " *o"e ‘.g‘.a?t% “i ? ‘t
e "; " “'{ .::'.g o ..‘.] ';:‘..'l ..J Y -’;,‘.
o“‘o.o.’o‘é * :. al*y® o * '.'. I » ..g T
T T T :‘ :. - N o ~.. .' .o?.. ':.... o.... . . .::“‘.‘.“} *. ..é
—11 s o% oo o* T D .o.. ' e 2y "oeee
rue, True, True .. g TR R
e . o e .2 o’ % N
:
2 -
3
ll) 2[‘)0 4[‘)0 6(‘)0 8(‘)0 lDIOO

« Compare each element in a.

* Return a new array with "True" or
"False" in each position.

A boolean index returns the elements

that are "True"

OIST

Array indexing

Using boolean indexes:

a = np.random.normal(size=1000)
X = np.arange(len(a)) |
plt.plot(x, a, "r.")
apos = (a>=0) .
array([True, False, True, True, True .. NEFORE

plt.plot(x[apos], alapos], "b.")

T T T T T T
0 200 400 600 800 1000

combine boolean arrays with '&" and |’
amid = (a<0.5) & (a>-0.5) « Compare each element in a.

plt.plot(xLamid], alamidl, "y.") Return a new array with "True" or
"False" in each position.

A boolean index returns the elements

that are "True"

OIST

Speed

in ipython we can use "timeit" to measure execution time

Elementwise multiplication Elementwise multiplication
using Numpy: using our own loop:

a = np.ones(10000)*10

b = np.ones_like(a)*?2 %htimelt

c = np.zeros_like(a) for 1 in range(len(a)):

cli] = alil*b[i]
%timeit c=a*b
4.76 ms £ 22.4 us per loop (mean =

3.35 us = 3.42 ns per loop (mean * std. std. dev. of 7 runs, 100 loops each)
dev. of 7 runs, 100000 loops each)

OIST

Speed

in Ipython we can use "timeit" to measure execution time

Elementwise multiplication Elementwise multiplication
using Numpy: using our own loop:

a = np.ones(10000)*10

b = np.ones_like(a)*?2 %htimelt

c = np.zeros_like(a) for 1 in range(len(a)):

c[i] = alil*b[1i]
%timeit c=a*b

i 22.4 us per loop (mean %
i 3.42 ns per loop (mean * std. Atd. dev. of 7 runs, 100 loops each)

dev. of 7 T 100000 loops each) ///

~_

Our loop is 1400% slower than Numpy!

OIST 39

Speed

in ipython we can use "timeit" to measure execution time

Elementwise multiplication Elementwise multiplication
using Numpy: using our own loop:

a = Np.ones : :

b = np.oned Always spend as much time as possible

¢ = np.zerg nside Numpy and Scipy functions! 1)) :
Btimelt c=¢
loop (mean %

— If there is a function to do something, 20 loops each)

3.35 us + 3.4
dev. of 7 ru

use it. Do not write it yourself.

OIST

loading, saving and displaying

reading, ertlng imageS # one way to read an image: use matplotlib
« plt.imread() reads an image img = plt.imread("shisa.jpg")

» 3-d array (height, width, color) # height, width, color channels
img. shape
* plt.imshow() shows array as image (200, 250, 3)
* plt.pcolormesh() shows as mesh plt.imshow(i) # show as image

* plt.imsave() saves a plot as image .
coordinates of the corners

X = np.arange(@, 251, 1)
y = np.arange(201, 0, -1)

show mesh, green channel, grayscale
plt.pcolormesh(x,y,imgl:,:,1], cmap="gray")

plt.imsave(”shisa_green. jpg")

Reading data

genfromtxt()

 Reads a text-format data file

* skips comments, empty lines
you can set what counts as comment etc.

 set the data type with "dtype="
* returns a Numpy array

example data file. genfromtxt() skips '#'
comments and empty lines automatically

1T 10 11 # whitespace 1s default separator
2 9 12

np.genfromtxt("datal.txt")
array(LL 1., 10., 11.1],
[2., 9., 12.]11) # float type

np.genfromtxt(”datal.txt”, dtype="int")
array(LL 1, 10, 111,
L 2, 9, 121D # integer

Reading data

genfromtxt ()

* Reads a text-format data file
* skips comments, empty lines

you can set what counts as comment etc.

 set the data type with "dtype="
* returns a Numpy array

* "delimiter=" sets separator char

e "skip_header="and "skip_footer="
skips lines at the beginning and end

But what if you have columns with
different data types?

count, vall, val2 # header line
1, 10, 11 # comma-separated data
2, 9, 12

np.genfromtxt("data2.txt")

array([[Lnan, nan, nan],

[nan, nan, 11.1],
[nan, nan, 12.]1]) # that didn't go well

np.genfromtxt("data2.txt”, skip_header=1,

n n

delimiter=",", dtype="int")

array(LL 1, 10, 111,

L 2, 9, 12]1]) # much better!

OIST

OIST

Reading data

genfromtxt() can only do so much

 Matlab .mat:

e CSV:

 HDF5:
 NetCDF:

e IDL .sav:
e DICOM:

"scipy.io" module

Python "CSV" module
Pandas read csv()

Python "hSpy" module
"scipy.io" module
"scipy.io" module

Python "pydicom” module
Python "dicom-numpy" module

OIST

* Special

* integrate
* optimize
* interpolate
e fitpack

* signal

* [inalg

* Sparse

* spatial

* stats

* ndimage
* 10

Scipy

Defines special functions

Integration and ODE solvers

find minima & roots, fit curves, LP
data interpolation

FFT, discrete cosine, sine
convolution, filters, spectral analysis
superset of Numpy linear algebra
sparse matrices, graphs, algebra
Voronoi, KDtree, convex hulls
Statistics

Image analysis

Matlab, IDL, Netcdf, other file formats

Optimization

_ _ o Parameter
Find the maximum/minimum/zero optimization

value of a function

* You can optimize (almost) anything
you can describe with a function:

* simulation parameters
* fit your model to data
* optimize a process

* assignment problems

* numerical methods (finding roots,
extrema, etc.)

Linear
programming

numerical methods

OIST

Scipy Exercise:
Find the root (zero) of a function

We want the intersection of two from scipy import optimize as opt

functions exp(-x) and x/10
define our function f(x)

1. define a python function f(x)
exp(-x) - x/10

2: find where f(x)==0

use a function in opt to find root of f(x)

1.0

0.8 A

See: https://docs.scipy.org/doc/scipy/reference

0.6

Also:
02 help(opt)
) E R — help(opt.<method>)

Scipy Exercise:
Find the root (zero) of a function

We want the intersection of two
functions exp(-x) and x/10

1. define a python function f(x)
exp(-x) - x/10
2: find where f(x)==0

Look for root finding methods:
ex: brentq, newton, fsolve

from scipy import optimize as opt

define our function f(x)

use a function in opt to find root of f(x)

See: https://docs.scipy.org/doc/scipy/reference

Also:
help(opt)
help(opt.<method>)

OIST

Scipy Exercise:
Find the root (zero) of a function

We want the intersection of two from scipy import optimize as opt

functions exp(-x) and x/10
define our function f(x)

1. define a python function f(x) def f(x):
return np.exp(-x) - x/10

exp(-x) - x/10 S ,
use a function in opt to find root of f(x)

2: find where f(x)==0 opt.brentq(f, 0, 10)
1.7455280027406994

Look for root finding methods:
ex: brentqg, newton, fsolve see: https://docs.scipy.org/doc/scipy/reference

Also:
help(opt)
help(opt.<method>)

OIST

Scipy Exercise:
Find the root (zero) of a function

1.0 1

0.8 1

0.6 1

0.4 1

0.2 1

0.0 1

from scipy import optimize as opt

define our function f(x)
def f(x):
return np.exp(-x) - x/10

use a function in opt to find root of f(x)
p = opt.brentq(f, 0, 10)

x=np.linspace(0,5,200)

plt.plot(x, np.exp(-x))

plt.plot(x, x/10)

plt.plot(p, p/10, "ko") # k=black, o=circle

Scipy Optimize:
A few Thoughts

* opt.minimize is a general interface for
finding function minima:

opt.minimize(f, [x0, y0...])

 Many HPC applications need parameter
tuning. Tuning by hand is error prone, grid
search is inefficient.

* The objective function f can be anything —
iIncluding a separate cluster job

job.sh:
— We can optimize our parameters

automatically with python and a cluster)19y 192

#SBATCH -t 0-1

OIST

i, JyTametri eee

" L
Rankine Power Cycle: Example 8.6 from Moran and Shapiro i T | I |
"Fundamentals of Engineering Thermodynamics ", 6th ed., 2008 s
iy " wanable. snpreeme e

t 100

‘DR Shyke sheet labbety ot wrievied oLatom

- —100

0.017 MW
=
132 MW k]
i LB
5 . pivot="mid'; every third arrow; units='inches' .. 12
wialin plat . E bes perd - [
- 64 ~= = A b e - & Powm -
N + 1 ‘ a i NNNF S LA NN
i 3 = INNN AV S/ NN
i 1 i'[[..J o 4 ANN N s NN
" 1 H | U N Y 2 R
| 4 o 34— > ¥ T = e W L s
~ 1 T | 0.0 0.4 0.8 2w AL NN N
- S T— - T T R 5]
- - Intensity (a.u. AV BN WA N N N U A 4
t‘j’{) . L NV B N NN U A4
L . - - . s A N NN N A
1% &3 o ' LB ERCE - - - - - - —
PG9 0 1 2 3 a 5 6
15° _ . -
o° -150=120°-90° -60° -30° 0* 30° 0°® 90° 120°150° PG7 N i
? 1 I] | ! B T ;] 2
150\ PGS E i =
8k -: 5 = I\.I‘I
-30° =1 B .
PG3 T
= B o
I T T T T T T T T T Pf.// rirs, X L

Time (s)

OIST

Plots

* The Pyplot interface ("plt.") keeps

plt.ion() # interactive mode track of figures and axes for you

#plt.1o0ff () # stop interactive mode
Lt figure() b crente A new Fieure * In "interactive mode" any change
pLE-T18 s immediately updates the plot

1t.plot(x,y,.. # plot 1-d data : :
PLE.plot(x,y,..) " — good for interactive use

save figure to file * non-interactive mode only draws
plt.savefig("myfig.png") the graph when you save or show
the figure

plt.show() # 1if we didn’'t use ion()

— great for programs, or when
you plot lots of data

OIST

plt.plot(..) # creates figure

figure parameters:

figure(nr, figsize, dpi, facecolor)
size 1in 1inches

pixels per inch
background color

figsize=(x, y)
dpi = n
facecolor = color

colors

'r' # red
'red’ # red
'#ff0000' # red
[1.0, 0.0, 0.0] # red

Plots

Creating the plot

* colors can be given in many ways:

r single color letter

red’ HTML name

'#f0000' Red-Green-Blue
triplet in hex

[1,0,0] RGB as [0...1] triplet

Plots

Subplots

f,ax = plt.subplots(2,2)

ax[0,0].plot(x,yl,'b") # plot each
ax[0,1].plot(x,y2,'r"') # quadrant
ax[1,0].plot(x,y3, 'g")
ax[1,1].plot(x,y4, 'k")

o N & (o)}

0.5 1

0.0 4

—0.5 1

-1.0 1

.

1.00 A
0.75 A
0.50 A
0.25 A

0.00 1,

0.14
0.0 1

—0.1 1

* Make multiple plots in grids

* There are a number of ways to create
subplots (including doing it "by hand")

* plt.subplots() is pretty flexible and
not hard to use.

o

OIST

Plots
Subplots

* sharex() and sharey() makes the x or

f,ax = plt.subplots(2,2, sharex=True) _
y-axisS common across rows/cols or

ax[0,0].plot(x,y1,'b") # plot each across all plots.
ax[0,1].plot(x,y2,'r’) # quadrant _ _
ax[1,0].plot(x,y3,'g") — axis changes in one plot affects
ax[1,1].plot(x,y4, k") all connected plots

ax[1,1].clear()

plt.sca(ax[1,1]) # set current axes 6 1“:
plt.plot(x,y4, 'k’) # can plot with " Z;
f pyplOt 27 ﬁ&
ax[1,1].set_x1im([-1,10]) # x axes are o ' e
ConneCted 0.5 - 0.1-

OIST

Plot Styles

0.5 - . 0.5 -
& 00- k%, 0.0 -
% —-0.5 - § -0.5 -
styles < -10- g 1o
Y -15- » -15-
-2.0-, . : : . . =2.0- I . ! . . .
plt.style.use("ggplot") T S T B B T
. . seapborn-paper S I [I_. ht2
print(plt.style.available) e olarize_t1g
['seaborn-paper’', 'classic’, .. AZ; & z'
% —0.5 - jrg) -0.5
FCS -1.0 X -1.0
-15 w -15-
Styles set visual defaults wi oV 2 R —
X X

* Not all defaults are actively set, so
settings from previous styles may fvethirtyeight

seaborn-whitegrid

ey
linger 7 5 00
wn Q -
g . o O 3
W} v 05
i_.. -1 % -1.0
5 @
.E -1.5
n -2
20
0 2 4 0 1 2 3 4 5
X X

Histogram

p = np.random.normal(scale=2, size=1000)
plt.hist(p, bins="auto')

p2=np.random.normal (loc=2, size=300)

plt.hist((p,p2),
histtype='barstacked’, # stack bars
bins=30, # set bin number
range=(-6,7)) # min and max

can also give explicit bin positions
bins=[0.0, 1.0, ..

cumulative=True # cumultive hist
density=True # normalized scale
weights=[...] # welgh points

simple histogram

100 -

50 -

-6 —4 -2 0 2 4 6

stacked histogram

100 -

50 -

1.0 -

0.5 1

0.0

OIST

Mesh and Contour Plots

| * 2d data is an array of z-values.
create coordinates

xc = np.arange(-5,5,0.1) * optionally give X and Y coordinates for

yCc = np.arange(-5,5,0.1) _ . o
X,y = np.meshgrid(xc,yc) each Z data points ("meshgrid")

e pcolormesh plots z values as colors:
create some 2-d data

z = np.sin(x)*np.exp(-x/5) +
np.cos(y)-np.exp(-y/4)

f,ax = plt.subplots()
ax.set_aspect(’'equal’)

p = ax.pcolormesh(x,y,z, # coord, vals
cmap=plt.cm.RdY1Bu_r) # color map

f.colorbar(p)

OIST

Mesh and Contour Plots

create coordinates

Xxc = np.arange(-5,5,0.1)
yc = np.arange(-5,5,0.1)
X,y = np.meshgrid(xc,yc)

create some 2-d data

Zz = np.sin(x)*np.exp(-x/5) +

np.cos(y)-np.exp(-y/4)

f,ax = plt.subplots()
ax.set_aspect(’'equal’)

c = ax.contour(x,y,z,
8,
vmax=3,
cmap=plt.cm.gray)

c.clabel(colors="k")

H H H H

coord, vals
number of levels
upper limit
color map

numerical labels

* 2d data is an array of z-values.

* optionally give X and Y coordinates for
each Z data points ("meshgrid")

e contour plots

OIST

Mesh and Contour Plots

create coordinates

Xxc = np.arange(-5,5,0.1)
yCc = np.arange(-5,5,0.1)
X,y = np.meshgrid(xc,yc)

create some 2-d data
z = np.sin(x)*np.exp(-x/5) +
np.cos(y)-np.exp(-y/4)

f,ax = plt.subplots()
ax.set_aspect(’'equal’)

s = ax.contourf(x,y,z, # coord, vals
cmap=plt.cm.RdY1Bu_r) # color map

f.colorbar(s)

8 # number of levels

* 2d data is an array of z-values.

* optionally give X and Y coordinates for
each Z data points ("meshgrid")

e filled contour plots:

OIST

Mesh and Contour Plots

* 2d data is an array of z-values.
f,ax = plt.subplots()

ax.set_aspect('equal’) * optionally give X and Y coordinates for

each Z data points ("meshgrid")
p = ax.pcolormesh(x, y, z, 8

cmap=plt.cm.RdY1Bu_r) * combine plots for best results:

c = ax.contour(x, y, z, 8,
vmax=3,
cmap=plt.cm.gray)

f.colorbar(p)
c.clabel(colors="k")

OIST

3D Plots

import matplotlib.pyplot as plt * import Axes3d from mpl_toolkits
import numpy as np _
from mpl_toolkits.mplot3d import Axes3D e adds 3d-related methods to matplotllb

f = plt.figure(figsize=(10,8)) * still need to use older "add_subplot"

f.add_subplot(111, projection='3d") instead of "subplots()"
ax = f.gca()

10 0.0

OIST

3D Plots

import matplotlib.pyplot as plt * plot_surface() plots the 3d surface
import numpy as np _ -
from mpl_toolkits.mplot3d import Axes3D * rstride 2 - one gridline every 2 data rows

, o * lw - grid line width
f = plt.figure(figsize=(10,8))
f.add_subplot(111, projection='3d") * alpha - surface transparency

ax = f.gca()

s=ax.plot_surface(x,y,z,
rstride=2, cstride=2,
lw=0.1,
alpha=0.9,
cmap=plt.cm.RdY1Bu_r)

3D Plots

f = plt.figure(figsize=(10,8)) * use contour() to plot the 2d contour
f.add_subplot(111, projection='3d") _ _ _
ax = f.gca() e zdir - which data is "down"

* offset - where to put the surface

s=ax.plot_surface(x,y,z,rstride=2, .
pcstride:Z,lv(\/:QB./1 ‘alpha=0.9, * set_zlim() set the floor of the graph

cmap=plt.cm.RdY1Bu_r)

ax.contourf(x,y,z,
zdir="z",
of fset=-7,
cmap=plt.cm.RdY1Bu_r)

ax.contour(x,y,z, zdir="z', offset=-7,
lw=0.5, cmap=plt.cm.gray)

ax.set_zlim((-7,4))

Other

* There is much more to Matplotlib. « Animations

We did not cover: » stream plots

* Bar charts * polar plots

* Pie charts * annotations

* scatterplots * embedded plots

* parametric plots * widgets

* free-form drawing * projections

* boxplots * sankey diagrams

* Image visualization * spectrums and spectograms
* Interactive applications * advanced layouts

* Hinton plots * triangulations

 output formats

OIST

Finally!
please fill in our feedback form!

https://groups.oist. jp/scs/introduction-python-feedback

Or go to SCDA — Documentation —
Introduction to Python — Feedback page

OIST

	Sida 1
	Sida 5
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 19
	Sida 21
	Sida 22
	Sida 28
	Sida 30
	Sida 31
	Sida 32
	Sida 33
	Sida 34
	Sida 35
	Sida 36
	Sida 37
	Sida 38
	Sida 39
	Sida 40
	Sida 41
	Sida 42
	Sida 44
	Sida 45
	Sida 47
	Sida 48
	Sida 49
	Sida 50
	Sida 52
	Sida 53
	Sida 54
	Sida 55
	Sida 58
	Sida 60
	Sida 61
	Sida 62
	Sida 68
	Sida 73
	Sida 74
	Sida 75
	Sida 76
	Sida 77
	Sida 78
	Sida 79
	Sida 80
	Sida 81
	Sida 82

