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The Libraries
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● NumPy: Base library. Fast arrays and matrices, 
FFT, linear algebra, dates, random numbers, etc

● SciPy: Uses NumPy. Large collection of high-
quality implementations of numerical 
algorithms: stats, ODE solvers, integration,
optimization, signal processing…

● Matplotlib: Data visualization for Nympy and Scipy. 
2-D and 3-D plots, animations, and 
interactive visualizations.

SymPy: Symbolic 
computation

Pandas: Time series 
analysis

scikit-learn: Machine
learning



A quick example
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import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

x = np.linspace(0,10,100)
y = np.random.normal(x/10, 0.2)

p = stats.linregress(x,y)

plt.figure()
plt.plot(x,y, 'r.', label='samples')
plt.plot(x, x*p.slope+p.intercept,
    "k", label='fit')

plt.legend()



A quick example
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import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

x = np.linspace(0,10,100)
y = np.random.normal(x/10, 0.2)

p = stats.linregress(x,y)

plt.figure()
plt.plot(x,y, 'r.', label='samples')
plt.plot(x, x*p.slope+p.intercept,
    "k", label='fit')

plt.legend()

Import numpy, name it “np”

Import matplotlib.pyplot, name it “plt”

● We often rename modules for ease of use; 
“np” and “plt” are standard names.

Import the “stats” module from scipy



A quick example
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import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

x = np.linspace(0,10,100)
y = np.random.normal(x/10, 0.2)

p = stats.linregress(x,y)

plt.figure()
plt.plot(x,y, 'r.', label='samples')
plt.plot(x, x*p.slope+p.intercept,
    "k", label='fit')

plt.legend()

Get an array of 100 numbers from 0 
to 10

Get an array of normal random 
numbers, with the mean at the “x/10” 
values, and variance 0.2

Linear regression to x and y



A quick example
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import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

x = np.linspace(0,10,100)
y = np.random.normal(x/10, 0.2)

p = stats.linregress(x,y)

plt.figure()
plt.plot(x,y, 'r.', label='samples')
plt.plot(x, x*p.slope+p.intercept,
    "k", label='fit')

plt.legend()

Create a figure to plot into

Plot the (x,y) points in red (“r”) dots (“.”) 
with label “samples”

Plot a line with slope p.slope and 
and zero at p.intercept, name it “fit”

Add the legend to the plot



Arrays
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The base Numpy data structure is the array:

  # 1-d vector from a list
  a = np.array( [1,2,3] )

  # 2-d array from a list of lists
  b = np.array([[1,2], [3,4]])
  b
array([[1, 2],
       [3, 4]])

  a = np.outer([1,2,3], [1,2,3])
  b = np.zeros_like(a)+2

  a*b # elementwise

array([[ 2,  4,  6],
       [ 4,  8, 12],
       [ 6, 12, 18]])

Arrays

● Stored as a single memory area
● All elements are the same type 

(there’s an exception...)

● very efficient, compatible with C 
and Fortran arrays

● array is an iterable:
● can convert to/from lists
● can loop over the elements 



Arrays
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The base Numpy data structure is the array:

Why Arrays?

● The storage is very efficient
● They are fast
● You can quickly operate on all 

elements in an array
● You can treat them as matrices

● same as Matlab matrices
● many high-performance operations 

available

  # 1-d vector from a list
  a = np.array( [1,2,3] )

  # 2-d array from a list of lists
  b = np.array([[1,2], [3,4]])
  b
array([[1, 2],
       [3, 4]])

  a = np.outer([1,2,3], [1,2,3])
  b = np.zeros_like(a)+2

  a*b # elementwise

array([[ 2,  4,  6],
       [ 4,  8, 12],
       [ 6, 12, 18]])



Array layout and shapes
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  b = np.arange(1,10).reshape(3,3)

  b.size # nr elements
9
  b.ndim # dimensions
2
  b.shape # size in each dimension
(3, 3)

  b.reshape(2,4)# ERROR  2×4 != 9
  
  x=np.ravel(b)
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9])

1 2 3
4 5 6
7 8 9

1 2 3 4 5 6 7 8 9

in memory:

b =

b.data=

b.shape[1]

b.
sh

ap
e[

0]

b[1,2]

row column



Array layout and shapes
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  b = np.arange(1,10).reshape(3,3)

  b.size # nr elements
9
  b.ndim # dimensions
2
  b.shape # size in each dimension
(3, 3)

  b.reshape(2,4)# ERROR  2×4 != 9
  
  x=np.ravel(b)
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9])

* * *

1 2 3

1 2 3 4 5 6 7 8 9

in memory:

b.data=

* * * * * *

compare with list:

my_list=

4 5 6 7 8 9



Arrays and matrices
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  # MATLAB-like initialization
  m  = np.mat('1, 2; 3, 4')

  m1 = np.asmatrix(a)
  m2 = np.asmatrix(b)

  m1*m2 # dot product

matrix([[12., 12., 12.],
        [24., 24., 24.],
        [36., 36., 36.]])

  a.dot(b) # also dot product

matrix([[12., 12., 12.],
        [24., 24., 24.],
        [36., 36., 36.]])

What about ‘matrix’?

● Really the same as an array:
● Same representation
● mostly same methods
● very cheap to convert with 

"asmatrix"

● But, multiplication is a matrix 
multiplication, not elementwise

● Also, can use MATLAB-like init

Most code uses array in practice



Create Arrays
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  # Create arrays:
  a = np.array([[1,2,3], [2,3,4]])
  b = np.ones_like(a) # same shape with ‘1’
  c = np.zeros((2,3,4)) # 3d array of ‘0’

  I = np.eye(3) # identity
  I
array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]])

  # you can specify the numerical type
  ia = np.ones((2,2), dtype=np.complex64)
  ia
array([[1.+0.j, 1.+0.j],
       [1.+0.j, 1.+0.j]], dtype=complex64)

● give a sequence of elements
● create pre-filled array of specific 

size
● Special array creation:

● np.eye, np.diag, np.random …
● many python modules can convert 

to/from numpy arrays

● You can specify the data type



Array operations
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  a = np.array([[1,2,3], [2,3,4]])

  a.sum()    
15
  a.sum(axis=0) # operate along one axis
array([3, 5, 7])

  np.log(a) # all can be called like this
array([[0.     , 0.69314, 1.09861],
       [0.69314, 1.09861, 1.38629]])
  
  b = a.copy()
  b.T # Transposition
array([[1, 2],
       [2, 3],
       [3, 4]])

  b.dot(a.T) # dot product
array([[14, 20],
       [20, 29]])

● Many functions operate on the 
elements of an array
● max(), min(), +, cumsum(), sin(), 
conjugate(), round(), prod() …

● You can set an axis for operations:

1 2 3

2 3 4
a:

0
1

1 2 3

2 3 4

a.sum(axis=0):

+

3 5 7
=

axis:

● operations give you a new array



Arrays: Broadcasting
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Operations are elementwise:

1 2 3

2 3 4

a:
9 8 7

6 5 4

b:

=+
1+9 2+8 3+7

2+6 3+5 4+4

1 2 3

2 3 4

a:
9 8 7

6 5 4

b:

+
  a = np.array([[1,2,3], [2,3,4]])
  b = np.array([[9,8,7], [6,5,4]])
  a+b
array([[10, 10, 10],
       [ 8,  8,  8]])

The operation happens on each pair of 
elements in the two arrays

→ the arrays have to be the same size



Arrays: Broadcasting
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Operations are elementwise:

1 2 3

2 3 4

a:
9 8 7

6 5 4

b:

=+
1+9 2+8 3+7

2+6 3+5 4+4

What about this?

1 2 3

2 3 4

a: b:

+

1 2 3

2 3 4

a:
9 8 7

6 5 4

b:

+

=
1+1 2+1 3+1

2+1 3+1 4+1

1 1

1 1 1

1

  a = np.array([[1,2,3], [2,3,4]])
  b = np.array([[9,8,7], [6,5,4]])
  a+b
array([[10, 10, 10],
       [ 8,  8,  8]])

  a = np.array([[1,2,3], [2,3,4]])
  b = 1
  a+b
array([[2, 3, 4],
       [3, 4, 5]])

Broadcasting fills in the single value into an array of the right size,
so that the elementwise operation can proceed.



Arrays: Broadcasting
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Operations are elementwise:

1 2 3

2 3 4

a:
9 8 7

6 5 4

b:

=+
1+9 2+8 3+7

2+6 3+5 4+4

What about this?

1 2 3

2 3 4

a: b:

+

1 2 3

2 3 4

a:
9 8 7

6 5 4

b:

+

=
1+1 2+1 3+1

2+1 3+1 4+1

1 1

1 1 1

1

  a = np.array([[1,2,3], [2,3,4]])
  b = np.array([[9,8,7], [6,5,4]])
  a+b
array([[10, 10, 10],
       [ 8,  8,  8]])

  a = np.array([[1,2,3], [2,3,4]])
  b = 1
  a+b
array([[2, 3, 4],
       [3, 4, 5]])

  a = np.array([[1,2,3], [2,3,4]])
  b = np.array([1,9,1])
  a+b
array([[2, 11, 4],
       [3, 12, 5]])

And what about this?

1 2 3

2 3 4

a: b:

+ =
1+1 2+9 3+1

2+1 3+9 4+11 9 1

1 9 1



Find information
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How to find out more   np.lookfor("median")
Search results for 'median'
---------------------------
numpy.median
    Compute the median along the specified axis.
numpy.nanmedian
    Compute the median along the specified axis, ...
...
numpy.quantile
    Compute the q-th quantile of the data along ...

  np.median?
Signature: np.median(a, axis=None, out=None, overw ...
Docstring:
Compute the median along the specified axis.

Returns the median of the array elements.

Parameters
----------
a : array_like
    Input array or object that can be converted to ...

● lookfor(“text”) looks for the text 
anywhere in numpy

● function? gives you documentation and 
examples for a function in ipython

● np.info(function) is another way to get 
the same documentation 

● Documentation:

    https://numpy.org/doc/1.18/



Visualisation Example: sin()
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calculate and plot sin(x) and sin(x/2) import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 2*np.pi, 50) # 50 pts in [0..2*pi)
s1 = np.sin(x)
s2 = np.sin(x/2)

plt.ion() # interactive mode
plt.figure(figsize=(8,6), dpi=128)

plt.plot(x,s1,"b-", lw=2)   # lw=linewidth
plt.plot(x,s2, ".-", c="red") # red dot-dash line

● np.linspace(s,e,n) generates n points 
between start and end

● plt.ion() for interactive mode

● figure(): use figsize (8,6 inches) and 
dpi (128) to set the plot size.
● 8,6 inches × 128 dpi = 1024×768 pixels

● plt.plot(): 
● arrays with x and y coordinates
● set line width, color, markers etc.



Visualisation Example: sin()
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calculate and plot sin(x) and sin(x/2) import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 2*np.pi, 50) # 50 pts in [0..2*pi)
s1 = np.sin(x)
s2 = np.sin(x/2)

plt.ion() # interactive mode
plt.figure(figsize=(8,6), dpi=128)

plt.plot(x,s1,"b-", lw=2)   # lw=linewidth
plt.plot(x,s2, ".-", c="red") # red dot-dash line

plt.xlabel("angle")
plt.ylabel("awesomness")

plt.tight_layout() # remove extra space
plt.savefig("awesome.png") # svg, pdf, other formats
plt.show() # show on screen

● plt.ion() for interactive mode

● figure(): use figsize (8,6 inches) and 
dpi (128) to set the plot size.

● plt.plot(): 
● arrays with x and y coordinates
● set line width, color, markers etc.

● plt.xlabel() sets label for x axis
● plt.tight_layout() removes extra space
● plt.savefig() saves figure to file
● plt.show() shows plot if not interactive



Array indexing

31

  a = np.array([[1,2,3,4], [5,6,7,8]])

  a[0, 0] # row, column from 0,0
1
  a[0][0] # same thing
1
  a[1] # single index=entire row
array([ 5, 6, 7, 8])
  
  a[0, -1] # -1 = last element
4
  
  a[0, [0,3,2]] # select elements
array([1, 4, 3])

arrays are indexed:
a[row, col, depth ...]

1 2 3

5 6 7
a:

0
1axis:

4

8

● begins with 0
● negative counts from the end
● can also use the “list of lists” way 

to index:
a[row][col][depth]

● a list as index: 
● list of elements to pick in order
● creates a copy of the data



Array slices
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  a = np.arange(1,9)
array([1, 2, 3, 4, 5, 6, 7, 8])

  a[2:4] # start:end+1
array([3, 4])

  a[2] # 1 value
3
  a[2:3] # 1-element array
array([3]) # 2:3 is DIFFERENT from 2!

  b = np.array([[1,2,3,4], [5,6,7,8]])

  b[:, 1]
array([2, 6]) # 1d array

  b[:, 1:2]
array([[2], # 2d array
       [6]])

1 2 3

5 6 7
b: 4

8

Slice: a “cut-out” piece of an array
● Slices are not copies
● specify slices with ‘:’

[first elem:last elem+1]

1 2 3 5 6 7a: 4 8

a[:3] = [0:3]   # start of array:3

a[2:] = [2:8]  # 2:end of array
a[:]  = [0:8]  # all elements



Array indexing

  a = np.random.normal(size=1000)
  x = np.arange(a.size)
  plt.plot(x, a, "r.")
  

Using boolean indexes:

Use a test to pick what values to use

For example: pick and plot values of 
‘a’ that are greater than or equal to 0



Array indexing

  a = np.random.normal(size=1000)
  x = np.arange(len(a))
  plt.plot(x, a, "r.")
  apos = (a>=0)
array([ True, False,  True,  True,  True …

Using boolean indexes:

● Compare each element in a.

● Return a new array with "True" or 
"False" in each position.



Array indexing

  
  a = np.random.normal(size=1000)
  x = np.arange(len(a))
  plt.plot(x, a, "r.")
  apos = (a>=0)
array([ True, False,  True,  True,  True … 

## Small example ##

  b = np.random.randint(-5,5,8)
array([-2,  4, -3,  1, -1,  2,  1,  4])

  bpos = (b>=0)
  b[bpos]
array([4, 1, 2, 1, 4])

Using boolean indexes:

● Compare each element in a.

● Return a new array with "True" or 
"False" in each position.

● A boolean index returns the elements 
that are "True"



Array indexing

Using boolean indexes:

  a = np.random.normal(size=1000)
  x = np.arange(len(a))
  plt.plot(x, a, "r.")
  apos = (a>=0)
array([ True, False,  True,  True,  True …

  plt.plot(x[apos], a[apos], "b.")

● Compare each element in a.

● Return a new array with "True" or 
"False" in each position.

● A boolean index returns the elements 
that are "True"



Array indexing

  a = np.random.normal(size=1000)
  x = np.arange(len(a))
  plt.plot(x, a, "r.")
  apos = (a>=0)
array([ True, False,  True,  True,  True …

  plt.plot(x[apos], a[apos], "b.")

  # combine boolean arrays with '&' and '|'
  amid = (a<0.5) & (a>-0.5)

  plt.plot(x[amid], a[amid], "y.")

Using boolean indexes:

● Compare each element in a.

● Return a new array with "True" or 
"False" in each position.

● A boolean index returns the elements 
that are "True"



Speed
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in ipython we can use "timeit" to measure execution time

Elementwise multiplication 
using Numpy:

  %%timeit
  for i in range(len(a)): 
      c[i] = a[i]*b[i]
 
4.76 ms ± 22.4 µs per loop (mean ± 
std. dev. of 7 runs, 100 loops each)

Elementwise multiplication 
using our own loop:

  a = np.ones(10000)*10
  b = np.ones_like(a)*2
  c = np.zeros_like(a)

  %timeit c=a*b

3.35 µs ± 3.42 ns per loop (mean ± std. 
dev. of 7 runs, 100000 loops each)



  %%timeit
  for i in range(len(a)): 
      c[i] = a[i]*b[i]
 
4.76 ms ± 22.4 µs per loop (mean ± 
std. dev. of 7 runs, 100 loops each)

  a = np.ones(10000)*10
  b = np.ones_like(a)*2
  c = np.zeros_like(a)

  %timeit c=a*b

3.35 µs ± 3.42 ns per loop (mean ± std. 
dev. of 7 runs, 100000 loops each)

Speed
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in Ipython we can use "timeit" to measure execution time

Elementwise multiplication 
using Numpy:

Elementwise multiplication 
using our own loop:

Our loop is 1400× slower than Numpy!



  a = np.ones(10000)*10
  b = np.ones_like(a)*2
  c = np.zeros_like(a)

  %timeit c=a*b

3.35 µs ± 3.42 ns per loop (mean ± std. 
dev. of 7 runs, 100000 loops each)

Speed

40

in ipython we can use "timeit" to measure execution time

Elementwise multiplication 
using Numpy:

Elementwise multiplication 
using our own loop:

  %%timeit
  for i in range(len(a)): 
      c[i] = a[i]*b[i]
 
4.76 ms ± 22.4 µs per loop (mean ± 
std. dev. of 7 runs, 100 loops each)

Always spend as much time as possible 
inside Numpy and Scipy functions!

→ If there is a function to do something, 
use it. Do not write it yourself.



loading, saving and displaying

  # one way to read an image: use matplotlib
  img = plt.imread("shisa.jpg")

  # height, width, color channels
  img.shape
(200, 250, 3)
  
  plt.imshow(i) # show as image

  # coordinates of the corners
  x = np.arange(0, 251, 1)
  y = np.arange(201, 0, -1)

  # show mesh, green channel, grayscale
  plt.pcolormesh(x,y,img[:,:,1], cmap="gray")

  plt.imsave("shisa_green.jpg")

reading, writing images
● plt.imread() reads an image

● 3-d array (height, width, color)

● plt.imshow() shows array as image
● plt.pcolormesh() shows as mesh
● plt.imsave() saves a plot as image



Reading data

# example data file. genfromtxt() skips '#'
# comments and empty lines automatically

1 10 11 # whitespace is default separator
2 9 12

genfromtxt()
● Reads a text-format data file
● skips comments, empty lines 

you can set what counts as comment etc.
● set the data type with "dtype="
● returns a Numpy array

  np.genfromtxt("data1.txt")
array([[ 1., 10., 11.],
       [ 2.,  9., 12.]]) # float type

  np.genfromtxt("data1.txt", dtype="int")
array([[ 1, 10, 11],
       [ 2,  9, 12]]) # integer
  



Reading data

count, val1, val2 # header line
1,  10, 11 # comma-separated data
2,  9,  12

genfromtxt()
● Reads a text-format data file
● skips comments, empty lines 

you can set what counts as comment etc.
● set the data type with "dtype="
● returns a Numpy array

● "delimiter=" sets separator char
● "skip_header=" and "skip_footer=" 

skips lines at the beginning and end

But what if you have columns with 
different data types?

  np.genfromtxt("data2.txt")
array([[nan, nan, nan],
       [nan, nan, 11.],
       [nan, nan, 12.]]) # that didn't go well

  np.genfromtxt("data2.txt", skip_header=1,
delimiter=",", dtype="int")

array([[ 1, 10, 11],
       [ 2,  9, 12]]) # much better!



Reading data

genfromtxt() can only do so much

● Matlab .mat: "scipy.io" module 

● CSV: Python "CSV" module
Pandas read_csv() 

● HDF5: Python "h5py" module

● NetCDF: "scipy.io" module

● IDL .sav: "scipy.io" module

● DICOM: Python "pydicom" module
Python "dicom-numpy" module

...

...



Scipy
● special Defines special functions
● integrate Integration and ODE solvers
● optimize find minima & roots, fit curves, LP
● interpolate data interpolation
● fftpack FFT, discrete cosine, sine
● signal convolution, filters, spectral analysis
● linalg superset of Numpy linear algebra
● sparse sparse matrices, graphs, algebra
● spatial Voronoi, KDtree, convex hulls 
● stats Statistics
● ndimage image analysis
● IO Matlab, IDL, Netcdf, other file formats



Optimization

Find the maximum/minimum/zero 
value of a function

● You can optimize (almost) anything 
you can describe with a function:
● simulation parameters
● fit your model to data
● optimize a process 
● assignment problems
● numerical methods (finding roots, 

extrema, etc.)

Linear
programming

Parameter
optimization

numerical methods



Scipy Exercise: 
Find the root (zero) of a function 

from scipy import optimize as opt

# define our function f(x)

# use a function in opt to find root of f(x)

We want the intersection of two 
functions exp(-x) and x/10

1: define a python function f(x)

   exp(-x) - x/10 

2: find where f(x)==0

see: https://docs.scipy.org/doc/scipy/reference

Also: 
  help(opt) 
  help(opt.<method>)



Scipy Exercise: 
Find the root (zero) of a function 

from scipy import optimize as opt

# define our function f(x)

# use a function in opt to find root of f(x)

We want the intersection of two 
functions exp(-x) and x/10

1: define a python function f(x)

   exp(-x) - x/10 

2: find where f(x)==0

Look for root finding methods:
ex: brentq, newton, fsolve   see: https://docs.scipy.org/doc/scipy/reference

Also: 
  help(opt) 
  help(opt.<method>)



Scipy Exercise: 
Find the root (zero) of a function 

We want the intersection of two 
functions exp(-x) and x/10

1: define a python function f(x)

   exp(-x) - x/10 

2: find where f(x)==0

Look for root finding methods:
ex: brentq, newton, fsolve   see: https://docs.scipy.org/doc/scipy/reference

Also: 
  help(opt) 
  help(opt.<method>)

from scipy import optimize as opt

# define our function f(x)
def f(x):
    return np.exp(-x) - x/10

# use a function in opt to find root of f(x)
opt.brentq(f, 0, 10)
1.7455280027406994



Scipy Exercise: 
Find the root (zero) of a function 

from scipy import optimize as opt

# define our function f(x)
def f(x):
    return np.exp(-x) - x/10

# use a function in opt to find root of f(x)
p = opt.brentq(f, 0, 10)

x=np.linspace(0,5,200)
plt.plot(x, np.exp(-x))
plt.plot(x, x/10)
plt.plot(p, p/10, "ko") # k=black, o=circle



Scipy Optimize: 
A  few Thoughts 

● opt.minimize is a general interface for 
finding function minima:

opt.minimize(f, [x0, y0...]) 

● Many HPC applications need parameter 
tuning. Tuning by hand is error prone, grid 
search is inefficient.

● The objective function f can be anything — 
including a separate cluster job

→ We can optimize our parameters 
automatically with python and a cluster 

search_program.py

opt.minimize(f, ...)
...
f(params):
  create job.sh with params
  run ("sbatch job.sh")
  wait for job
  calc "goodness" from result 

job.sh:

#/bin/bash
#SBATCH -t 0-1
...



Plots



Plots

  plt.ion() # interactive mode  
  #plt.ioff() # stop interactive mode  

  plt.figure() # create a new figure
 
  plt.plot(x,y,…) # plot 1-d data  
  
  
  # save figure to file
  plt.savefig("myfig.png")

  plt.show() # if we didn't use ion()

● The Pyplot interface ("plt.") keeps 
track of figures and axes for you

● In "interactive mode" any change 
immediately updates the plot

→ good for interactive use

● non-interactive mode only draws 
the graph when you save or show 
the figure

→ great for programs, or when 
you plot lots of data



Plots

  plt.plot( … ) # creates figure
  
  # figure parameters:

  figure(nr, figsize, dpi, facecolor)

  figsize=(x, y) # size in inches
  dpi = n # pixels per inch
  facecolor = color # background color

  # colors
  'r' # red
  'red' # red
  '#ff0000' # red
  [1.0, 0.0, 0.0] # red

Creating the plot

● colors can be given in many ways:

'r' single color letter

'red' HTML name

'#ff0000' Red-Green-Blue
triplet in hex

[1,0,0] RGB as [0...1] triplet



Plots

  f,ax = plt.subplots(2,2)

  ax[0,0].plot(x,y1,'b') # plot each
  ax[0,1].plot(x,y2,'r') # quadrant
  ax[1,0].plot(x,y3,'g')
  ax[1,1].plot(x,y4,'k')
  

Subplots
● Make multiple plots in grids
● There are a number of ways to create 

subplots (including doing it "by hand")
● plt.subplots() is pretty flexible and 

not hard to use.



Plots

  f,ax = plt.subplots(2,2, sharex=True)

  ax[0,0].plot(x,y1,'b') # plot each
  ax[0,1].plot(x,y2,'r') # quadrant
  ax[1,0].plot(x,y3,'g')
  ax[1,1].plot(x,y4,'k')
  
  ax[1,1].clear()
  plt.sca(ax[1,1]) # set current axes
  plt.plot(x,y4,'k') # can plot with

# pyplot  

  ax[1,1].set_xlim([-1,10]) # x axes are
# connected

  

Subplots
● sharex() and sharey() makes the x or 

y-axis common across rows/cols or 
across all plots.

→ axis changes in one plot affects 
all connected plots



Plot Styles

# styles

plt.style.use("ggplot")

print(plt.style.available)
['seaborn-paper', 'classic', … 

Styles set visual defaults
● Not all defaults are actively set, so 

settings from previous styles may 
linger.



Histogram

  p = np.random.normal(scale=2, size=1000)
  plt.hist(p, bins='auto')

  p2=np.random.normal(loc=2, size=300)
  plt.hist((p,p2),
    histtype='barstacked', # stack bars
    bins=30, # set bin number
    range=(-6,7)) # min and max

# can also give explicit bin positions
  bins=[0.0, 1.0, …
  cumulative=True # cumultive hist
  density=True # normalized scale
  weights=[…] # weigh points



Mesh and Contour Plots

  # create coordinates
  xc = np.arange(-5,5,0.1)
  yc = np.arange(-5,5,0.1)
  x,y = np.meshgrid(xc,yc)

  # create some 2-d data
  z = np.sin(x)*np.exp(-x/5) + 
      np.cos(y)-np.exp(-y/4)

  f,ax = plt.subplots()
  ax.set_aspect('equal')

  p = ax.pcolormesh(x,y,z, # coord, vals
    cmap=plt.cm.RdYlBu_r) # color map
  
  f.colorbar(p)

● 2d data is an array of z-values.
● optionally give X and Y coordinates for 

each Z data points ("meshgrid") 
● pcolormesh plots z values as colors:



Mesh and Contour Plots

  # create coordinates
  xc = np.arange(-5,5,0.1)
  yc = np.arange(-5,5,0.1)
  x,y = np.meshgrid(xc,yc)

  # create some 2-d data
  z = np.sin(x)*np.exp(-x/5) + 
      np.cos(y)-np.exp(-y/4)

  f,ax = plt.subplots()
  ax.set_aspect('equal')

  c = ax.contour(x,y,z, # coord, vals
    8, # number of levels
    vmax=3, # upper limit
    cmap=plt.cm.gray) # color map

  c.clabel(colors="k") # numerical labels

● 2d data is an array of z-values.
● optionally give X and Y coordinates for 

each Z data points ("meshgrid") 
● contour plots



Mesh and Contour Plots

  # create coordinates
  xc = np.arange(-5,5,0.1)
  yc = np.arange(-5,5,0.1)
  x,y = np.meshgrid(xc,yc)

  # create some 2-d data
  z = np.sin(x)*np.exp(-x/5) + 
      np.cos(y)-np.exp(-y/4)

  f,ax = plt.subplots()
  ax.set_aspect('equal')

  s = ax.contourf(x,y,z, # coord, vals
    8, # number of levels
    cmap=plt.cm.RdYlBu_r) # color map
  
  f.colorbar(s)

● 2d data is an array of z-values.
● optionally give X and Y coordinates for 

each Z data points ("meshgrid") 
● filled contour plots:



Mesh and Contour Plots

  f,ax = plt.subplots()
  ax.set_aspect('equal')

  p = ax.pcolormesh(x, y, z, 8
          cmap=plt.cm.RdYlBu_r)

  c = ax.contour(x, y, z, 8, 
          vmax=3, 
          cmap=plt.cm.gray)
  
  f.colorbar(p)
  c.clabel(colors="k")

● 2d data is an array of z-values.
● optionally give X and Y coordinates for 

each Z data points ("meshgrid") 
● combine plots for best results:



3D Plots
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

f = plt.figure(figsize=(10,8))
f.add_subplot(111, projection='3d')
ax = f.gca()

● import Axes3d from mpl_toolkits
● adds 3d-related methods to matplotlib
● still need to use older "add_subplot" 

instead of "subplots()"



3D Plots
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

f = plt.figure(figsize=(10,8))
f.add_subplot(111, projection='3d')
ax = f.gca()

s=ax.plot_surface(x,y,z, 
      rstride=2, cstride=2, 
      lw=0.1, 
      alpha=0.9, 
      cmap=plt.cm.RdYlBu_r)

● plot_surface() plots the 3d surface
● rstride 2 - one gridline every 2 data rows
● lw - grid line width
● alpha - surface transparency



3D Plots
f = plt.figure(figsize=(10,8))
f.add_subplot(111, projection='3d')
ax = f.gca()

s=ax.plot_surface(x,y,z,rstride=2, 
      cstride=2,lw=0.1,alpha=0.9, 
      cmap=plt.cm.RdYlBu_r)

ax.contourf(x,y,z, 
      zdir='z', 
      offset=-7, 
cmap=plt.cm.RdYlBu_r)

ax.contour(x,y,z, zdir='z', offset=-7, 
lw=0.5, cmap=plt.cm.gray)

ax.set_zlim((-7,4))

● use contour() to plot the 2d contour 
● zdir - which data is "down"
● offset - where to put the surface 
● set_zlim() set the floor of the graph



● Animations
● stream plots
● polar plots
● annotations
● embedded plots
● widgets
● projections
● sankey diagrams
● spectrums and spectograms
● advanced layouts
● triangulations
● . . .

● There is much more to Matplotlib.
We did not cover:

● Bar charts
● Pie charts
● scatterplots
● parametric plots
● free-form drawing
● boxplots
● image visualization
● Interactive applications
● Hinton plots
● output formats

Other



please fill in our feedback form!

Finally!

https://groups.oist.jp/scs/introduction-python-feedback

Or go to SCDA → Documentation →
Introduction to Python → Feedback page
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