
Introduction To Python Programming
III: Numpy, SciPy and Matplotlib

Jan Moren, SCDA

The Libraries

5

● NumPy: Base library. Fast arrays and matrices,
FFT, linear algebra, dates, random numbers, etc

● SciPy: Uses NumPy. Large collection of high-
quality implementations of numerical
algorithms: stats, ODE solvers, integration,
optimization, signal processing…

● Matplotlib: Data visualization for Nympy and Scipy.
2-D and 3-D plots, animations, and
interactive visualizations.

SymPy: Symbolic
computation

Pandas: Time series
analysis

scikit-learn: Machine
learning

A quick example

6

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

x = np.linspace(0,10,100)
y = np.random.normal(x/10, 0.2)

p = stats.linregress(x,y)

plt.figure()
plt.plot(x,y, 'r.', label='samples')
plt.plot(x, x*p.slope+p.intercept,
 "k", label='fit')

plt.legend()

A quick example

7

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

x = np.linspace(0,10,100)
y = np.random.normal(x/10, 0.2)

p = stats.linregress(x,y)

plt.figure()
plt.plot(x,y, 'r.', label='samples')
plt.plot(x, x*p.slope+p.intercept,
 "k", label='fit')

plt.legend()

Import numpy, name it “np”

Import matplotlib.pyplot, name it “plt”

● We often rename modules for ease of use;
“np” and “plt” are standard names.

Import the “stats” module from scipy

A quick example

8

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

x = np.linspace(0,10,100)
y = np.random.normal(x/10, 0.2)

p = stats.linregress(x,y)

plt.figure()
plt.plot(x,y, 'r.', label='samples')
plt.plot(x, x*p.slope+p.intercept,
 "k", label='fit')

plt.legend()

Get an array of 100 numbers from 0
to 10

Get an array of normal random
numbers, with the mean at the “x/10”
values, and variance 0.2

Linear regression to x and y

A quick example

9

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

x = np.linspace(0,10,100)
y = np.random.normal(x/10, 0.2)

p = stats.linregress(x,y)

plt.figure()
plt.plot(x,y, 'r.', label='samples')
plt.plot(x, x*p.slope+p.intercept,
 "k", label='fit')

plt.legend()

Create a figure to plot into

Plot the (x,y) points in red (“r”) dots (“.”)
with label “samples”

Plot a line with slope p.slope and
and zero at p.intercept, name it “fit”

Add the legend to the plot

Arrays

10

The base Numpy data structure is the array:

 # 1-d vector from a list
 a = np.array([1,2,3])

 # 2-d array from a list of lists
 b = np.array([[1,2], [3,4]])
 b
array([[1, 2],
 [3, 4]])

 a = np.outer([1,2,3], [1,2,3])
 b = np.zeros_like(a)+2

 a*b # elementwise

array([[2, 4, 6],
 [4, 8, 12],
 [6, 12, 18]])

Arrays

● Stored as a single memory area
● All elements are the same type

(there’s an exception...)

● very efficient, compatible with C
and Fortran arrays

● array is an iterable:
● can convert to/from lists
● can loop over the elements

Arrays

11

The base Numpy data structure is the array:

Why Arrays?

● The storage is very efficient
● They are fast
● You can quickly operate on all

elements in an array
● You can treat them as matrices

● same as Matlab matrices
● many high-performance operations

available

 # 1-d vector from a list
 a = np.array([1,2,3])

 # 2-d array from a list of lists
 b = np.array([[1,2], [3,4]])
 b
array([[1, 2],
 [3, 4]])

 a = np.outer([1,2,3], [1,2,3])
 b = np.zeros_like(a)+2

 a*b # elementwise

array([[2, 4, 6],
 [4, 8, 12],
 [6, 12, 18]])

Array layout and shapes

12

 b = np.arange(1,10).reshape(3,3)

 b.size # nr elements
9
 b.ndim # dimensions
2
 b.shape # size in each dimension
(3, 3)

 b.reshape(2,4)# ERROR 2×4 != 9

 x=np.ravel(b)
array([1, 2, 3, 4, 5, 6, 7, 8, 9])

1 2 3
4 5 6
7 8 9

1 2 3 4 5 6 7 8 9

in memory:

b =

b.data=

b.shape[1]

b.
sh

ap
e[

0]

b[1,2]

row column

Array layout and shapes

13

 b = np.arange(1,10).reshape(3,3)

 b.size # nr elements
9
 b.ndim # dimensions
2
 b.shape # size in each dimension
(3, 3)

 b.reshape(2,4)# ERROR 2×4 != 9

 x=np.ravel(b)
array([1, 2, 3, 4, 5, 6, 7, 8, 9])

* * *

1 2 3

1 2 3 4 5 6 7 8 9

in memory:

b.data=

* * * * * *

compare with list:

my_list=

4 5 6 7 8 9

Arrays and matrices

14

 # MATLAB-like initialization
 m = np.mat('1, 2; 3, 4')

 m1 = np.asmatrix(a)
 m2 = np.asmatrix(b)

 m1*m2 # dot product

matrix([[12., 12., 12.],
 [24., 24., 24.],
 [36., 36., 36.]])

 a.dot(b) # also dot product

matrix([[12., 12., 12.],
 [24., 24., 24.],
 [36., 36., 36.]])

What about ‘matrix’?

● Really the same as an array:
● Same representation
● mostly same methods
● very cheap to convert with

"asmatrix"

● But, multiplication is a matrix
multiplication, not elementwise

● Also, can use MATLAB-like init

Most code uses array in practice

Create Arrays

15

 # Create arrays:
 a = np.array([[1,2,3], [2,3,4]])
 b = np.ones_like(a) # same shape with ‘1’
 c = np.zeros((2,3,4)) # 3d array of ‘0’

 I = np.eye(3) # identity
 I
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])

 # you can specify the numerical type
 ia = np.ones((2,2), dtype=np.complex64)
 ia
array([[1.+0.j, 1.+0.j],
 [1.+0.j, 1.+0.j]], dtype=complex64)

● give a sequence of elements
● create pre-filled array of specific

size
● Special array creation:

● np.eye, np.diag, np.random …
● many python modules can convert

to/from numpy arrays

● You can specify the data type

Array operations

16

 a = np.array([[1,2,3], [2,3,4]])

 a.sum()
15
 a.sum(axis=0) # operate along one axis
array([3, 5, 7])

 np.log(a) # all can be called like this
array([[0. , 0.69314, 1.09861],
 [0.69314, 1.09861, 1.38629]])

 b = a.copy()
 b.T # Transposition
array([[1, 2],
 [2, 3],
 [3, 4]])

 b.dot(a.T) # dot product
array([[14, 20],
 [20, 29]])

● Many functions operate on the
elements of an array
● max(), min(), +, cumsum(), sin(),
conjugate(), round(), prod() …

● You can set an axis for operations:

1 2 3

2 3 4
a:

0
1

1 2 3

2 3 4

a.sum(axis=0):

+

3 5 7
=

axis:

● operations give you a new array

Arrays: Broadcasting

17

Operations are elementwise:

1 2 3

2 3 4

a:
9 8 7

6 5 4

b:

=+
1+9 2+8 3+7

2+6 3+5 4+4

1 2 3

2 3 4

a:
9 8 7

6 5 4

b:

+
 a = np.array([[1,2,3], [2,3,4]])
 b = np.array([[9,8,7], [6,5,4]])
 a+b
array([[10, 10, 10],
 [8, 8, 8]])

The operation happens on each pair of
elements in the two arrays

→ the arrays have to be the same size

Arrays: Broadcasting

19

Operations are elementwise:

1 2 3

2 3 4

a:
9 8 7

6 5 4

b:

=+
1+9 2+8 3+7

2+6 3+5 4+4

What about this?

1 2 3

2 3 4

a: b:

+

1 2 3

2 3 4

a:
9 8 7

6 5 4

b:

+

=
1+1 2+1 3+1

2+1 3+1 4+1

1 1

1 1 1

1

 a = np.array([[1,2,3], [2,3,4]])
 b = np.array([[9,8,7], [6,5,4]])
 a+b
array([[10, 10, 10],
 [8, 8, 8]])

 a = np.array([[1,2,3], [2,3,4]])
 b = 1
 a+b
array([[2, 3, 4],
 [3, 4, 5]])

Broadcasting fills in the single value into an array of the right size,
so that the elementwise operation can proceed.

Arrays: Broadcasting

21

Operations are elementwise:

1 2 3

2 3 4

a:
9 8 7

6 5 4

b:

=+
1+9 2+8 3+7

2+6 3+5 4+4

What about this?

1 2 3

2 3 4

a: b:

+

1 2 3

2 3 4

a:
9 8 7

6 5 4

b:

+

=
1+1 2+1 3+1

2+1 3+1 4+1

1 1

1 1 1

1

 a = np.array([[1,2,3], [2,3,4]])
 b = np.array([[9,8,7], [6,5,4]])
 a+b
array([[10, 10, 10],
 [8, 8, 8]])

 a = np.array([[1,2,3], [2,3,4]])
 b = 1
 a+b
array([[2, 3, 4],
 [3, 4, 5]])

 a = np.array([[1,2,3], [2,3,4]])
 b = np.array([1,9,1])
 a+b
array([[2, 11, 4],
 [3, 12, 5]])

And what about this?

1 2 3

2 3 4

a: b:

+ =
1+1 2+9 3+1

2+1 3+9 4+11 9 1

1 9 1

Find information

22

How to find out more np.lookfor("median")
Search results for 'median'

numpy.median
 Compute the median along the specified axis.
numpy.nanmedian
 Compute the median along the specified axis, ...
...
numpy.quantile
 Compute the q-th quantile of the data along ...

 np.median?
Signature: np.median(a, axis=None, out=None, overw ...
Docstring:
Compute the median along the specified axis.

Returns the median of the array elements.

Parameters

a : array_like
 Input array or object that can be converted to ...

● lookfor(“text”) looks for the text
anywhere in numpy

● function? gives you documentation and
examples for a function in ipython

● np.info(function) is another way to get
the same documentation

● Documentation:

 https://numpy.org/doc/1.18/

Visualisation Example: sin()

28

calculate and plot sin(x) and sin(x/2) import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 2*np.pi, 50) # 50 pts in [0..2*pi)
s1 = np.sin(x)
s2 = np.sin(x/2)

plt.ion() # interactive mode
plt.figure(figsize=(8,6), dpi=128)

plt.plot(x,s1,"b-", lw=2) # lw=linewidth
plt.plot(x,s2, ".-", c="red") # red dot-dash line

● np.linspace(s,e,n) generates n points
between start and end

● plt.ion() for interactive mode

● figure(): use figsize (8,6 inches) and
dpi (128) to set the plot size.
● 8,6 inches × 128 dpi = 1024×768 pixels

● plt.plot():
● arrays with x and y coordinates
● set line width, color, markers etc.

Visualisation Example: sin()

30

calculate and plot sin(x) and sin(x/2) import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 2*np.pi, 50) # 50 pts in [0..2*pi)
s1 = np.sin(x)
s2 = np.sin(x/2)

plt.ion() # interactive mode
plt.figure(figsize=(8,6), dpi=128)

plt.plot(x,s1,"b-", lw=2) # lw=linewidth
plt.plot(x,s2, ".-", c="red") # red dot-dash line

plt.xlabel("angle")
plt.ylabel("awesomness")

plt.tight_layout() # remove extra space
plt.savefig("awesome.png") # svg, pdf, other formats
plt.show() # show on screen

● plt.ion() for interactive mode

● figure(): use figsize (8,6 inches) and
dpi (128) to set the plot size.

● plt.plot():
● arrays with x and y coordinates
● set line width, color, markers etc.

● plt.xlabel() sets label for x axis
● plt.tight_layout() removes extra space
● plt.savefig() saves figure to file
● plt.show() shows plot if not interactive

Array indexing

31

 a = np.array([[1,2,3,4], [5,6,7,8]])

 a[0, 0] # row, column from 0,0
1
 a[0][0] # same thing
1
 a[1] # single index=entire row
array([5, 6, 7, 8])

 a[0, -1] # -1 = last element
4

 a[0, [0,3,2]] # select elements
array([1, 4, 3])

arrays are indexed:
a[row, col, depth ...]

1 2 3

5 6 7
a:

0
1axis:

4

8

● begins with 0
● negative counts from the end
● can also use the “list of lists” way

to index:
a[row][col][depth]

● a list as index:
● list of elements to pick in order
● creates a copy of the data

Array slices

32

 a = np.arange(1,9)
array([1, 2, 3, 4, 5, 6, 7, 8])

 a[2:4] # start:end+1
array([3, 4])

 a[2] # 1 value
3
 a[2:3] # 1-element array
array([3]) # 2:3 is DIFFERENT from 2!

 b = np.array([[1,2,3,4], [5,6,7,8]])

 b[:, 1]
array([2, 6]) # 1d array

 b[:, 1:2]
array([[2], # 2d array
 [6]])

1 2 3

5 6 7
b: 4

8

Slice: a “cut-out” piece of an array
● Slices are not copies
● specify slices with ‘:’

[first elem:last elem+1]

1 2 3 5 6 7a: 4 8

a[:3] = [0:3] # start of array:3

a[2:] = [2:8] # 2:end of array
a[:] = [0:8] # all elements

Array indexing

 a = np.random.normal(size=1000)
 x = np.arange(a.size)
 plt.plot(x, a, "r.")

Using boolean indexes:

Use a test to pick what values to use

For example: pick and plot values of
‘a’ that are greater than or equal to 0

Array indexing

 a = np.random.normal(size=1000)
 x = np.arange(len(a))
 plt.plot(x, a, "r.")
 apos = (a>=0)
array([True, False, True, True, True …

Using boolean indexes:

● Compare each element in a.

● Return a new array with "True" or
"False" in each position.

Array indexing

 a = np.random.normal(size=1000)
 x = np.arange(len(a))
 plt.plot(x, a, "r.")
 apos = (a>=0)
array([True, False, True, True, True …

Small example

 b = np.random.randint(-5,5,8)
array([-2, 4, -3, 1, -1, 2, 1, 4])

 bpos = (b>=0)
 b[bpos]
array([4, 1, 2, 1, 4])

Using boolean indexes:

● Compare each element in a.

● Return a new array with "True" or
"False" in each position.

● A boolean index returns the elements
that are "True"

Array indexing

Using boolean indexes:

 a = np.random.normal(size=1000)
 x = np.arange(len(a))
 plt.plot(x, a, "r.")
 apos = (a>=0)
array([True, False, True, True, True …

 plt.plot(x[apos], a[apos], "b.")

● Compare each element in a.

● Return a new array with "True" or
"False" in each position.

● A boolean index returns the elements
that are "True"

Array indexing

 a = np.random.normal(size=1000)
 x = np.arange(len(a))
 plt.plot(x, a, "r.")
 apos = (a>=0)
array([True, False, True, True, True …

 plt.plot(x[apos], a[apos], "b.")

 # combine boolean arrays with '&' and '|'
 amid = (a<0.5) & (a>-0.5)

 plt.plot(x[amid], a[amid], "y.")

Using boolean indexes:

● Compare each element in a.

● Return a new array with "True" or
"False" in each position.

● A boolean index returns the elements
that are "True"

Speed

38

in ipython we can use "timeit" to measure execution time

Elementwise multiplication
using Numpy:

 %%timeit
 for i in range(len(a)):
 c[i] = a[i]*b[i]

4.76 ms ± 22.4 µs per loop (mean ±
std. dev. of 7 runs, 100 loops each)

Elementwise multiplication
using our own loop:

 a = np.ones(10000)*10
 b = np.ones_like(a)*2
 c = np.zeros_like(a)

 %timeit c=a*b

3.35 µs ± 3.42 ns per loop (mean ± std.
dev. of 7 runs, 100000 loops each)

 %%timeit
 for i in range(len(a)):
 c[i] = a[i]*b[i]

4.76 ms ± 22.4 µs per loop (mean ±
std. dev. of 7 runs, 100 loops each)

 a = np.ones(10000)*10
 b = np.ones_like(a)*2
 c = np.zeros_like(a)

 %timeit c=a*b

3.35 µs ± 3.42 ns per loop (mean ± std.
dev. of 7 runs, 100000 loops each)

Speed

39

in Ipython we can use "timeit" to measure execution time

Elementwise multiplication
using Numpy:

Elementwise multiplication
using our own loop:

Our loop is 1400× slower than Numpy!

 a = np.ones(10000)*10
 b = np.ones_like(a)*2
 c = np.zeros_like(a)

 %timeit c=a*b

3.35 µs ± 3.42 ns per loop (mean ± std.
dev. of 7 runs, 100000 loops each)

Speed

40

in ipython we can use "timeit" to measure execution time

Elementwise multiplication
using Numpy:

Elementwise multiplication
using our own loop:

 %%timeit
 for i in range(len(a)):
 c[i] = a[i]*b[i]

4.76 ms ± 22.4 µs per loop (mean ±
std. dev. of 7 runs, 100 loops each)

Always spend as much time as possible
inside Numpy and Scipy functions!

→ If there is a function to do something,
use it. Do not write it yourself.

loading, saving and displaying

 # one way to read an image: use matplotlib
 img = plt.imread("shisa.jpg")

 # height, width, color channels
 img.shape
(200, 250, 3)

 plt.imshow(i) # show as image

 # coordinates of the corners
 x = np.arange(0, 251, 1)
 y = np.arange(201, 0, -1)

 # show mesh, green channel, grayscale
 plt.pcolormesh(x,y,img[:,:,1], cmap="gray")

 plt.imsave("shisa_green.jpg")

reading, writing images
● plt.imread() reads an image

● 3-d array (height, width, color)

● plt.imshow() shows array as image
● plt.pcolormesh() shows as mesh
● plt.imsave() saves a plot as image

Reading data

example data file. genfromtxt() skips '#'
comments and empty lines automatically

1 10 11 # whitespace is default separator
2 9 12

genfromtxt()
● Reads a text-format data file
● skips comments, empty lines

you can set what counts as comment etc.
● set the data type with "dtype="
● returns a Numpy array

 np.genfromtxt("data1.txt")
array([[1., 10., 11.],
 [2., 9., 12.]]) # float type

 np.genfromtxt("data1.txt", dtype="int")
array([[1, 10, 11],
 [2, 9, 12]]) # integer

Reading data

count, val1, val2 # header line
1, 10, 11 # comma-separated data
2, 9, 12

genfromtxt()
● Reads a text-format data file
● skips comments, empty lines

you can set what counts as comment etc.
● set the data type with "dtype="
● returns a Numpy array

● "delimiter=" sets separator char
● "skip_header=" and "skip_footer="

skips lines at the beginning and end

But what if you have columns with
different data types?

 np.genfromtxt("data2.txt")
array([[nan, nan, nan],
 [nan, nan, 11.],
 [nan, nan, 12.]]) # that didn't go well

 np.genfromtxt("data2.txt", skip_header=1,
delimiter=",", dtype="int")

array([[1, 10, 11],
 [2, 9, 12]]) # much better!

Reading data

genfromtxt() can only do so much

● Matlab .mat: "scipy.io" module

● CSV: Python "CSV" module
Pandas read_csv()

● HDF5: Python "h5py" module

● NetCDF: "scipy.io" module

● IDL .sav: "scipy.io" module

● DICOM: Python "pydicom" module
Python "dicom-numpy" module

...

...

Scipy
● special Defines special functions
● integrate Integration and ODE solvers
● optimize find minima & roots, fit curves, LP
● interpolate data interpolation
● fftpack FFT, discrete cosine, sine
● signal convolution, filters, spectral analysis
● linalg superset of Numpy linear algebra
● sparse sparse matrices, graphs, algebra
● spatial Voronoi, KDtree, convex hulls
● stats Statistics
● ndimage image analysis
● IO Matlab, IDL, Netcdf, other file formats

Optimization

Find the maximum/minimum/zero
value of a function

● You can optimize (almost) anything
you can describe with a function:
● simulation parameters
● fit your model to data
● optimize a process
● assignment problems
● numerical methods (finding roots,

extrema, etc.)

Linear
programming

Parameter
optimization

numerical methods

Scipy Exercise:
Find the root (zero) of a function

from scipy import optimize as opt

define our function f(x)

use a function in opt to find root of f(x)

We want the intersection of two
functions exp(-x) and x/10

1: define a python function f(x)

 exp(-x) - x/10

2: find where f(x)==0

see: https://docs.scipy.org/doc/scipy/reference

Also:
 help(opt)
 help(opt.<method>)

Scipy Exercise:
Find the root (zero) of a function

from scipy import optimize as opt

define our function f(x)

use a function in opt to find root of f(x)

We want the intersection of two
functions exp(-x) and x/10

1: define a python function f(x)

 exp(-x) - x/10

2: find where f(x)==0

Look for root finding methods:
ex: brentq, newton, fsolve see: https://docs.scipy.org/doc/scipy/reference

Also:
 help(opt)
 help(opt.<method>)

Scipy Exercise:
Find the root (zero) of a function

We want the intersection of two
functions exp(-x) and x/10

1: define a python function f(x)

 exp(-x) - x/10

2: find where f(x)==0

Look for root finding methods:
ex: brentq, newton, fsolve see: https://docs.scipy.org/doc/scipy/reference

Also:
 help(opt)
 help(opt.<method>)

from scipy import optimize as opt

define our function f(x)
def f(x):
 return np.exp(-x) - x/10

use a function in opt to find root of f(x)
opt.brentq(f, 0, 10)
1.7455280027406994

Scipy Exercise:
Find the root (zero) of a function

from scipy import optimize as opt

define our function f(x)
def f(x):
 return np.exp(-x) - x/10

use a function in opt to find root of f(x)
p = opt.brentq(f, 0, 10)

x=np.linspace(0,5,200)
plt.plot(x, np.exp(-x))
plt.plot(x, x/10)
plt.plot(p, p/10, "ko") # k=black, o=circle

Scipy Optimize:
A few Thoughts

● opt.minimize is a general interface for
finding function minima:

opt.minimize(f, [x0, y0...])

● Many HPC applications need parameter
tuning. Tuning by hand is error prone, grid
search is inefficient.

● The objective function f can be anything —
including a separate cluster job

→ We can optimize our parameters
automatically with python and a cluster

search_program.py

opt.minimize(f, ...)
...
f(params):
 create job.sh with params
 run ("sbatch job.sh")
 wait for job
 calc "goodness" from result

job.sh:

#/bin/bash
#SBATCH -t 0-1
...

Plots

Plots

 plt.ion() # interactive mode
 #plt.ioff() # stop interactive mode

 plt.figure() # create a new figure

 plt.plot(x,y,…) # plot 1-d data

 # save figure to file
 plt.savefig("myfig.png")

 plt.show() # if we didn't use ion()

● The Pyplot interface ("plt.") keeps
track of figures and axes for you

● In "interactive mode" any change
immediately updates the plot

→ good for interactive use

● non-interactive mode only draws
the graph when you save or show
the figure

→ great for programs, or when
you plot lots of data

Plots

 plt.plot(…) # creates figure

 # figure parameters:

 figure(nr, figsize, dpi, facecolor)

 figsize=(x, y) # size in inches
 dpi = n # pixels per inch
 facecolor = color # background color

 # colors
 'r' # red
 'red' # red
 '#ff0000' # red
 [1.0, 0.0, 0.0] # red

Creating the plot

● colors can be given in many ways:

'r' single color letter

'red' HTML name

'#ff0000' Red-Green-Blue
triplet in hex

[1,0,0] RGB as [0...1] triplet

Plots

 f,ax = plt.subplots(2,2)

 ax[0,0].plot(x,y1,'b') # plot each
 ax[0,1].plot(x,y2,'r') # quadrant
 ax[1,0].plot(x,y3,'g')
 ax[1,1].plot(x,y4,'k')

Subplots
● Make multiple plots in grids
● There are a number of ways to create

subplots (including doing it "by hand")
● plt.subplots() is pretty flexible and

not hard to use.

Plots

 f,ax = plt.subplots(2,2, sharex=True)

 ax[0,0].plot(x,y1,'b') # plot each
 ax[0,1].plot(x,y2,'r') # quadrant
 ax[1,0].plot(x,y3,'g')
 ax[1,1].plot(x,y4,'k')

 ax[1,1].clear()
 plt.sca(ax[1,1]) # set current axes
 plt.plot(x,y4,'k') # can plot with

pyplot

 ax[1,1].set_xlim([-1,10]) # x axes are
connected

Subplots
● sharex() and sharey() makes the x or

y-axis common across rows/cols or
across all plots.

→ axis changes in one plot affects
all connected plots

Plot Styles

styles

plt.style.use("ggplot")

print(plt.style.available)
['seaborn-paper', 'classic', …

Styles set visual defaults
● Not all defaults are actively set, so

settings from previous styles may
linger.

Histogram

 p = np.random.normal(scale=2, size=1000)
 plt.hist(p, bins='auto')

 p2=np.random.normal(loc=2, size=300)
 plt.hist((p,p2),
 histtype='barstacked', # stack bars
 bins=30, # set bin number
 range=(-6,7)) # min and max

can also give explicit bin positions
 bins=[0.0, 1.0, …
 cumulative=True # cumultive hist
 density=True # normalized scale
 weights=[…] # weigh points

Mesh and Contour Plots

 # create coordinates
 xc = np.arange(-5,5,0.1)
 yc = np.arange(-5,5,0.1)
 x,y = np.meshgrid(xc,yc)

 # create some 2-d data
 z = np.sin(x)*np.exp(-x/5) +
 np.cos(y)-np.exp(-y/4)

 f,ax = plt.subplots()
 ax.set_aspect('equal')

 p = ax.pcolormesh(x,y,z, # coord, vals
 cmap=plt.cm.RdYlBu_r) # color map

 f.colorbar(p)

● 2d data is an array of z-values.
● optionally give X and Y coordinates for

each Z data points ("meshgrid")
● pcolormesh plots z values as colors:

Mesh and Contour Plots

 # create coordinates
 xc = np.arange(-5,5,0.1)
 yc = np.arange(-5,5,0.1)
 x,y = np.meshgrid(xc,yc)

 # create some 2-d data
 z = np.sin(x)*np.exp(-x/5) +
 np.cos(y)-np.exp(-y/4)

 f,ax = plt.subplots()
 ax.set_aspect('equal')

 c = ax.contour(x,y,z, # coord, vals
 8, # number of levels
 vmax=3, # upper limit
 cmap=plt.cm.gray) # color map

 c.clabel(colors="k") # numerical labels

● 2d data is an array of z-values.
● optionally give X and Y coordinates for

each Z data points ("meshgrid")
● contour plots

Mesh and Contour Plots

 # create coordinates
 xc = np.arange(-5,5,0.1)
 yc = np.arange(-5,5,0.1)
 x,y = np.meshgrid(xc,yc)

 # create some 2-d data
 z = np.sin(x)*np.exp(-x/5) +
 np.cos(y)-np.exp(-y/4)

 f,ax = plt.subplots()
 ax.set_aspect('equal')

 s = ax.contourf(x,y,z, # coord, vals
 8, # number of levels
 cmap=plt.cm.RdYlBu_r) # color map

 f.colorbar(s)

● 2d data is an array of z-values.
● optionally give X and Y coordinates for

each Z data points ("meshgrid")
● filled contour plots:

Mesh and Contour Plots

 f,ax = plt.subplots()
 ax.set_aspect('equal')

 p = ax.pcolormesh(x, y, z, 8
 cmap=plt.cm.RdYlBu_r)

 c = ax.contour(x, y, z, 8,
 vmax=3,
 cmap=plt.cm.gray)

 f.colorbar(p)
 c.clabel(colors="k")

● 2d data is an array of z-values.
● optionally give X and Y coordinates for

each Z data points ("meshgrid")
● combine plots for best results:

3D Plots
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

f = plt.figure(figsize=(10,8))
f.add_subplot(111, projection='3d')
ax = f.gca()

● import Axes3d from mpl_toolkits
● adds 3d-related methods to matplotlib
● still need to use older "add_subplot"

instead of "subplots()"

3D Plots
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

f = plt.figure(figsize=(10,8))
f.add_subplot(111, projection='3d')
ax = f.gca()

s=ax.plot_surface(x,y,z,
 rstride=2, cstride=2,
 lw=0.1,
 alpha=0.9,
 cmap=plt.cm.RdYlBu_r)

● plot_surface() plots the 3d surface
● rstride 2 - one gridline every 2 data rows
● lw - grid line width
● alpha - surface transparency

3D Plots
f = plt.figure(figsize=(10,8))
f.add_subplot(111, projection='3d')
ax = f.gca()

s=ax.plot_surface(x,y,z,rstride=2,
 cstride=2,lw=0.1,alpha=0.9,
 cmap=plt.cm.RdYlBu_r)

ax.contourf(x,y,z,
 zdir='z',
 offset=-7,
cmap=plt.cm.RdYlBu_r)

ax.contour(x,y,z, zdir='z', offset=-7,
lw=0.5, cmap=plt.cm.gray)

ax.set_zlim((-7,4))

● use contour() to plot the 2d contour
● zdir - which data is "down"
● offset - where to put the surface
● set_zlim() set the floor of the graph

● Animations
● stream plots
● polar plots
● annotations
● embedded plots
● widgets
● projections
● sankey diagrams
● spectrums and spectograms
● advanced layouts
● triangulations
● . . .

● There is much more to Matplotlib.
We did not cover:

● Bar charts
● Pie charts
● scatterplots
● parametric plots
● free-form drawing
● boxplots
● image visualization
● Interactive applications
● Hinton plots
● output formats

Other

please fill in our feedback form!

Finally!

https://groups.oist.jp/scs/introduction-python-feedback

Or go to SCDA → Documentation →
Introduction to Python → Feedback page

	Sida 1
	Sida 5
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 19
	Sida 21
	Sida 22
	Sida 28
	Sida 30
	Sida 31
	Sida 32
	Sida 33
	Sida 34
	Sida 35
	Sida 36
	Sida 37
	Sida 38
	Sida 39
	Sida 40
	Sida 41
	Sida 42
	Sida 44
	Sida 45
	Sida 47
	Sida 48
	Sida 49
	Sida 50
	Sida 52
	Sida 53
	Sida 54
	Sida 55
	Sida 58
	Sida 60
	Sida 61
	Sida 62
	Sida 68
	Sida 73
	Sida 74
	Sida 75
	Sida 76
	Sida 77
	Sida 78
	Sida 79
	Sida 80
	Sida 81
	Sida 82

