
Introduction To Python Programming
II: How to Use It

Jan Moren, SCDA

Today:

2

● Use a python module
— Example: Generate random values

● Install a Python package as a user
— Often useful when installing software

● Exercise: Read a file, filter and output another file
— Reading and writing files
— splitting lines and finding bits of information

● Create a Slurm job and submit from a Python script
— Create text file from template ("here" document)
— run system commands from inside a script

Use a Python module

We will use the random module

 import random # import the random module
 random.randint(0,10) # a random integer in [0, 10]
2

 import random as rn # give module a shorter name
 rn.randint(0,10)
9

 from random import randint # import a module function
 randint(0,10) # directly
6

 from random import * # import all functions - dangerous

Make your own Python module
● Modules are just Python files

→ You can organize and import your own code

mymodule example

def double(x):
 return x*2

use mymodule

import mymodule as mm
print(mm.double(2))

main.py

mymodule.py

Use modules to:
● Organize your program

Split up a large program into modules with
related code
Makes organization and debugging easier

● Reuse useful code
Example: data analysis and graphing code
Build a library of useful tools for interactive
analysis of your data sets

Python packages

● Python Packages: a directory with
● One or more module files, and
● An __init__.py file

- It can be empty
- It’s run when you load the package

packagename/

module1.py
module2.py

__init__.py

...

You don’t often write packages yourself
● Useful for large projects
● When you want to share a package in public

What do you do?

Install a Python package

6

Problem: You want to install a program in Deigo.

The instructions tell you to run:

pip install <some package>

or you download it, unpack, then run:

python setup.py install

But this fails with an error about not having permission

Install a Python package

7

1. Load our Python module

Load python 3:

$ module load python/3.7.3

Use 'pip3' and 'python3'

Use our python modules,
never the system Python

Install a Python package

8

1. Load our Python module

Load python 3:

$ module load python/3.7.3

Use 'pip3' and 'python3' Over 300 000 (!) projects

Anything you need may already
be available thereUse our python modules,

never the system Python

Packages are at PyPi:

https://pypi.org/

Install a Python package in your home

2. Install locally using the '--user'
option

for pip3:

for setup.py:

$ pip3 install --user <package>

$ python3 setup.py --user

This installs the package into your
home.

~/.local/bin

Programs go to:

packages go to:

~/.local/lib/python3.7/site-packages

this depends on your Python version

Install a Python package in your home

2. Install locally using the '--user'
option

Example:

$ pip3 install --user cli-weather

This installs the package into your
home.

~/.local/bin

Programs go to:

packages go to:

~/.local/lib/python3.7/site-packages

this depends on your Python version

$ ~/.local/bin/cli-weather city Naha -f

Install a Python package in /apps

You can choose the installation directory with PYTHONUSERBASE:

$ export PYTHONUSERBASE="/apps/unit/UnitU"
$ pip3 install --user <package>

/apps/unit/UnitU/bin

Programs go to:

packages go to:

/apps/unit/UnitU/lib/python3.7/site-packages/

Remember this path

Install a Python package in /apps

3. Tell Python where the local library and binary is

Add the path to site-packages to PYTHONPATH:

export PYTHONPATH="/apps/unit/UnitU/lib/python3.7/site-packages:$PYTHONPATH"

Add the path to bin to PATH

export PATH="/apps/UnitU/bin:$PATH"

export PYTHONPATH="/apps/unit/UnitU/lib/python3.7/site-packages:$PYTHONPATH"

Install a Python package in /apps

3. Tell Python where the local library is

Add the path to site-packages to PYTHONPATH:

set PYTHONPATH to our new path

separate paths
with ':'

followed by whatever is
already in PYTHONPATH

export makes PYTHONPATH available to the entire
shell environment

Exercise:
Convert a file from one format to another

17

We will convert a FASTA file from one format
to another
● "Fasta" is a bioinformatics sequence file format

● This kind of problem shows up in any field; the
specific file format here is not important.

Exercise:
Convert a file from one format to another

18

We will convert a FASTA file from one format
to another
● "Fasta" is a bioinformatics sequence file format

● This kind of problem shows up in any field; the
specific file format here is not important.

Copy the session data files:

cp -r /apps/share/training/Python/session2 .

Exercise:
Convert a file from one format to another

20

Input file:
>NODE_130_length_9368_cov_2.522454
GCGCCGTTTTTCATA...

>NODE_357_length_6506_cov_2.493338
GCCTCACCTGTGGAA...

Output file:
>sequence_number_1_[cov=2.52]
GCGCCGTTTTTCATA...

>sequence_number_2_[cov=2.49]
GCCTCACCTGTGGAA...

Input file:

Copy the session data files:

cp -r /apps/share/training/Python/session2 .

the gene data is just copied right over

Exercise:
Convert a file from one format to another

22

Input file:

>NODE_130_length_9368_cov_2.522454

begins with '>'

stuff separated by '_'

covariance

Output file:Input file:

>sequence_number_1_[cov=2.52]

fixed text counter increases
by one

same covariance,
rounded to 2 decimals

>NODE_130_length_9368_cov_2.522454
GCGCCGTTTTTCATA...

>NODE_357_length_6506_cov_2.493338
GCCTCACCTGTGGAA...

>sequence_number_1_[cov=2.52]
GCGCCGTTTTTCATA...

>sequence_number_2_[cov=2.49]
GCCTCACCTGTGGAA...

Exercise:
Convert a file from one format to another

23

Our program

Exercise:
Convert a file from one format to another

24

● for each line:

Intro, preparation

Main loop

Exercise:
Convert a file from one format to another

25

● for each line:
● if it's a header line:

● else:

Intro, preparation

Main loop

Two cases we
treat differently

Exercise:
Convert a file from one format to another

26

● for each line:
● if it's a header line:

● else:
● write genome line to output

Intro, preparation

Main loop

Two cases we
treat differently

Exercise:
Convert a file from one format to another

27

● for each line:
● if it's a header line:

● convert the header to new format
● write header line to output

● else:
● write genome line to output

Intro, preparation

Main loop

Two cases we
treat differently

Exercise:
Convert a file from one format to another

28

● get input and output file names
● open input and output files
● for each line:

● if it's a header line:
● convert the header to new format
● write header line to output

● else:
● write genome line to output

Intro, preparation

Main loop

Two cases we
treat differently

Exercise:
Convert a file from one format to another

29

Questions: How do we ...
● convert the header?
● open files?
● read and write from files?
● get our filenames?

● get input and output file names
● open input and output files
● for each line:

● if it's a header line:
● convert the header to new format
● write header line to output

● else:
● write genome line to output

30

>NODE_130_length_9368_cov_2.522454

begins with '>'

stuff separated by '_'

covariance

>sequence_number_1_[cov=2.52]

fixed text
index increases
by one

same covariance,
rounded to 2 decimals

def myfunction(a,b,c):
 ...
 return result

"string: {} bipp".format(value)

Convert the header: write a function
● take as input an index value "index", and

input header text line "line"
● output a new header line (using "return")
● see string.split() - split line into a list

● split() splits a line between spaces
● split('_') splits a line between '_'

31

Convert the header: write a function
● take as input an index value "index", and

input header text line "line"

def convert_header(index, line):

 split_line = line.split('_')
 cov = float(split_line[-1])
 return '>sequence_number_{}_[cov={:.2f}]\n'.format(index, cov)

● output a new header line (using "return")
● see string.split() - split line into a list

● split() splits a line between spaces
● split('_') splits a line between '_'

>NODE_130_length_9368_cov_2.522454

begins with '>'

stuff separated by '_'

covariance

>sequence_number_1_[cov=2.52]

fixed text
index increases
by one

same covariance,
rounded to 2 decimals

Exercise:
Convert a file from one format to another

32

● Opening files: use the "with" syntax

with open('filename', 'r') as f: # open filename for reading
 <do stuff with filehandle f>

open two files at once:

with open('file1', 'r') as fin, open('file2', 'w') as fout:
 <read from fin, write to fout>

Exercise:
Convert a file from one format to another

33

● read and write from files:

with open('filename', 'r') as fin: # open filename for reading
 all_lines = fin.readlines() # read all lines in file

with open('filename', 'r') as fin: # open filename for reading
 for line in fin:
 <do something with each line>

with open('filename', 'w') as fout:
 fout.writelines(lines) # write a line or a list

of lines

Exercise:
Convert a file from one format to another

34

Our main loop:

infile = 'inputfile.fa'
outfile = 'output.txt'

with open(infile, 'r') as fin, open(outfile, 'w') as fout:

 for line in fin:

Exercise:
Convert a file from one format to another

35

Our main loop:

infile = 'inputfile.fa'
outfile = 'output.txt'

with open(infile, 'r') as fin, open(outfile, 'w') as fout:

 for line in fin:
 if line[0] == '>':

 else:

Exercise:
Convert a file from one format to another

36

Our main loop:

infile = 'inputfile.fa'
outfile = 'output.txt'

with open(infile, 'r') as fin, open(outfile, 'w') as fout:

 for line in fin:
 if line[0] == '>':

 else:
 fout.writelines(line)

Exercise:
Convert a file from one format to another

37

Our main loop:

infile = 'inputfile.fa'
outfile = 'output.txt'

with open(infile, 'r') as fin, open(outfile, 'w') as fout:

 for line in fin:
 if line[0] == '>':
 outline = convert_header(index, line)
 fout.writelines(outline)
 else:
 fout.writelines(line)

Exercise:
Convert a file from one format to another

38

Our main loop:

infile = 'inputfile.fa'
outfile = 'output.txt'
index = 1

with open(infile, 'r') as fin, open(outfile, 'w') as fout:

 for line in fin:
 if line[0] == '>':
 outline = convert_header(index, line)
 fout.writelines(outline)
 index += 1
 else:
 fout.writelines(line)

Exercise:
Convert a file from one format to another

39

Get the input and output files: use the 'sys' module:

import sys

infile = sys.argv[1]
outfile = sys.argv[2]

Run like:

$ python3 convfasta.py inputfile.fa output.txt

Exercise:
Convert a file from one format to another

40

Make our program a "real" program

1. Tell linux that python3 knows what to do with it:

#!/bin/env python3
import sys
...

2. Make it executable:

$ chmod +x convfasta.py

Run like:

$./convfasta.py input.fa out.txt

43

Take a look at this Slurm script:

#!/bin/bash

#SBATCH -t 1:00
#SBATCH --mem=2G

tail mylittlefile.txt

What if we wanted to choose the
input file when we submit?

 Let's write a Python script that:

1) gets the filename
2) creates a multi-line string with this

Slurm script and the filename filled
in

3) saves it to a file
4) Runs it with sbatch

we already know how to do these!

Generate and run a Slurm script from Python

44

Remember multi-line strings
and format substitutions:

s='''#!/bin/bash

#SBATCH -t 1:00
#SBATCH --mem=2G

tail {}
'''

s.format(...)

import subprocess as sb

just run a command
sb.run(['sbatch','myscript.slurm'])

run command, get the output
ret=sb.run([...], stdout=sb.PIPE,
 universal_newlines=True)

output as a list
ret.stdout.split()

Run a command:

Generate and run a Slurm script from Python

The final script

45

import sys
import subprocess as sb
sfile = sys.argv[1] # Get first argument

script='''#!/bin/bash
#SBATCH -t 10:00
#SBATCH --mem=2G
tail {}
'''

with open('myscript.slurm', 'w') as f:
 f.writelines(script.format(sfile)) # substitute and write

sb.run(['sbatch', 'myscript.slurm']) # start job

The final script - get the job ID

import sys
import subprocess as sb
sfile = sys.argv[1] # Get first argument

script='''#!/bin/bash
#SBATCH -t 10:00
#SBATCH --mem=2G
tail {}
'''

with open('myscript.slurm', 'w') as f:
 f.writelines(script.format(sfile)) # substitute and write

ret = sb.run(['sbatch','myscript.slurm'],
 stdout=sb.PIPE, universal_newlines=True)

jobid = ret.stdout.split()[3]
print(jobid)

46

47

WARNING!!!!!WARNING!!!!!

Generate and run a Slurm script from Python

Don't use this to submit lots and lots of jobs!!!!!

you can break Slurm for everyone
and we may need to kill your jobs if you do

Always use Slurm Array jobs for this

Next Session

Let’s get Scientific!

● Numpy and Scipy
– The workhorses for all scientific Python programming

● Matplotlib
– Plot your data

	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 5
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 16
	Sida 17
	Sida 18
	Sida 20
	Sida 22
	Sida 23
	Sida 24
	Sida 25
	Sida 26
	Sida 27
	Sida 28
	Sida 29
	Sida 30
	Sida 31
	Sida 32
	Sida 33
	Sida 34
	Sida 35
	Sida 36
	Sida 37
	Sida 38
	Sida 39
	Sida 40
	Sida 43
	Sida 44
	Sida 45
	Sida 46
	Sida 47
	Sida 48

