Introduction To Python Programming
I: The Python language

Jan Moren, SCDA M

OIST

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY
UL E SR R IPANE e 2

Written in or Extends Python:

PyMOL
NEST

Blender
HTSeq

OIST

Python is High Level, Interpreted and Dynamic

No memory management
No system programming needed
Complex data structures

Extensive library of modules
(“batteries included”)

TensorFlow
NEURON
Qiime
BUSCO

- Standalone programs
— Scripting language

— Interactive use

— Embeddable into applications
— OS and system agnostic

Useful everywhere

Run Python on:

Windows
Linux
OSX
Android

Supercomputers
Desktops
Microcontrollers

Focus on your problem,
not your code

Example: Replace text strings
in a list of files

Python version below

Python

import fileinput
files=["test1.txt"”, "test2.txt"”, "test3.txt"]

for line in fileinput.input(files, inplace=True):
print(line.replace(’'Goodbye!’, 'Hello!'), end="")

OIST

Focus on your problem,
not your code

Example: Replace text strings
in a list of files

* Python version below
* C to the right

Python

C

import fileinput
files=["test1.txt"”, "test2.txt"”, "test3.txt"]

for line in fileinput.input(files, inplace=True):
print(line.replace(’'Goodbye!’, 'Hello!'), end="")

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include <sys/types.h>
#include <fentl.h>
#include <sys/stat.h>
#include <unistd.h>
#include <err.h>
#include <string.h>

char * find_match(const char *buf, const char * buf_end, const char *pat, size_t len)
{
ptrdiff_t i;
char *start = buf;
while (start + len < buf_end) {
for (i = 0; i < len; i++)
if (start[i] != pat[i]) break;

if (i == len) return (char *)start;
start++;

return 0;

}

int replace(const char xfrom, const char *to, const char xfname)
#define bail(msg) { warn(msg” '%s'"”, fname); goto done; }
struct stat st;
int ret = 0;
char *buf = 0, #start, *end;
size_t len = strlen(from), nlen = strlen(to);
int fd = open(fname, O_RDWR);

if (fd == -1) bail("Can’t open”);

if (fstat(fd, &st) == -1) bail("Can't stat");

if (!'(buf = malloc(st.st_size))) bail(”"Can’t alloc");

if (read(fd, buf, st.st_size) != st.st_size) bail("Bad read");

start = buf;
end = find_match(start, buf + st.st_size, from, len);
if (!end) goto done; /* no match found, don't change file %/

ftruncate(fd, 0);
lseek(fd, 0, 0);

do {
write(fd, start, end - start); /* write content before match x/
write(fd, to, nlen); /* write replacement of match x/
start = end + len; /* skip to end of match */

/* find match again */
end = find_match(start, buf + st.st_size, from, len);
} while (end);

/* write leftover after last match %/
if (start < buf + st.st_size)
write(fd, start, buf + st.st_size - start);

aone:
if (fd != -1) close(fd);
if (buf) free(buf);

return ret;
¥
int main()
const char % files[] = { "testl.txt", "test2.txt", "test3.txt" };
for (int i = 0; i < sizeof(files)/sizeof(charx); i++)
replace(”Goodbye!”, “Hello!”, files[i]);
return 0;
}

OIST

Let's Run some Python

We will use “ipython” for an interactive shell

* Loginto Deigo ssh -X <your-name>@deigo.oist.jp
* load Python 3 module load python/3.7.3

* start iIPython ipython3

OIST

History Of PythOn ssh -X <your-name>@deigo.oist. jp
or module load python/3.7.3

ipython3
Why are there two of them?!
Python 2 Python 3
* Named after Monty Python * first released in 2008
* released in 2000 * 3.5 onwards is now stable, complete,
supported

* Huge success; many users,
lots of packages

* We Recommend Python 3
* End of life 2020 for all future Python projects.
— never use it any longer

OIST

Example

Code comes in blocks # an example python program
- marked by indentation, not def greeting(name, age):
""" or "begin", "end" print("Hi {}.”.format(name))

1f age>45:

If, while, function defs etc. end | Srint("You must be very wise!")

with ":", followed by a block

here the main program starts

' while True:
you don't need to declare name = input('your name (or quit) :')

variable types if name=='quit':
‘ break

starts a comment . § , ’
age = input(”"what's your age :")

greeting(name, int(age))

print(’'Bye now! ')

Example

Code comes in blocks

— marked by indentation, not
end"

ll{","}" Or "begin ,

if, while, function defs etc. end
with ":", followed by a block

you don't need to declare
variable types

starts a comment

an example python program

def greeting(name, age):

print("Hi {}.".format(name))

1f age>45:
print(”"You must be very wise!")

here the main program starts
while True:

name = input(’'your name (or quit) :")
if name=='quit':
break

age = input(”"what's your age :")
greeting(name, int(age))

print(’'Bye now! ')

Code comes in blocks

— marked by indentation, not

ll{","}" Or "begin", "end"

If, while, function defs etc. end
with ":", followed by a block

you don't need to declare
variable types

starts a comment

Example

an example python program

def greeting(@am®, G@ge):
print("Hi {}.".format(name))

1f age>45:
print(”"You must be very wise!")

here the main program starts
while True:

@am® = input('your name (or quit) :')
1f name=='quit':
break

Gge= input("what's your age :")

greeting(name, int(age))

print(’'Bye now! ')

10

Code comes in blocks

— marked by indentation, not

ll{","}" Or "begin", "end"

If, while, function defs etc. end
with ":", followed by a block

you don't need to declare
variable types

starts a comment

Example

an example python program

def greeting(name, age):
print("Hi {}.".format(name))

1f age>45:
print(”"You must be very wise!")

here the main program starts
while True:
name = input(’'your name (or quit) :")
1f name=='quit':
break

age = input(”"what's your age :")
greeting(name, int(age))

print(’'Bye now! ')

11

Integers

— arbitrarily large
Floating point numbers
- 64 bit

* Complex numbers

— pair of floats
— use j for imaginary part

Numbers

1+1 # 1integers
2

1.5%2.5 # floating point
3.75

5/3 # division
1.6666666666666667

5//3 # integer division
T

5%3 # remainder
2

2.5%%4 # exponentiation
39.0625

4+3 # complex numbers
(4+33)

int(3.5) # convert types
3

float(4)
4.0

OIST

12

Variables

 stores a value

Variables

* don’t need to declare the type

— can force a type with type functions:

X

int

y
1.0

= 1

type(x)

y = float(x)

type(y)
float

x 1s an int
x 1s an int

y is a float

OIST

X = 1
y = 1.5
Z = 3+1]

res = xtyxz

H H HF H

print("res:"”, res) #

res: (5.5+1.53)

X = X+2
X += 2

H =

X 1S now an int
y 1s a float

Z 1s a complex
res 1s complex

print the value

increase x
same thing

Variables
e stores a value

Variables

* don’t need to declare the type

— can force a type with type functions

* most things (“objects”) in Python have
attributes and methods

- attribute:
- method:

an associated value
object-specific function

i1
— —
o1

X
y .
y4

3417
res = xty*z

print("res:"”, res)
res: (5.5+1.53)

X = X+2
X += 2

res.real
5.5
res.conjugate()
(5.5-1.53)

H H HF H

H =

#

X 1S now an int
y 1s a float

Z 1s a complex
res i1s complex
print the value
increase X

same thing

an attribute

a method

OIST

14

Booleans and comparisons

comparison operators

— all comparisons return True or False.

~ "bool" is the type for True and False
- (True is 1, False is 0)

- "and", "or" and "not" combine
boolean values:

a and b : true if a and b are true
a or b : true if either a or b is true
not a : true if a is false, false if a is true

X
y

5
3

X >y
True

X ==Yy
False

X =y
True

X <=y
False

#

#

#

#

X==y or y>0 #

True

x>0 and x<10 #

True

X = y<0
print(x)
False

#

greater than?

!

Equal? Note: two '=='
Not equal?
smaller or equal?

either or

both

can store booleans

15

the "if" statement

Do something only "if" true:
if <boolean> :

<something>
<something> I_ code block
Indentation

— a code block is a group of code lines
with the same indentation

- be careful that you use the exact same
number of spaces! Usually 4 per level.

- if the boolean condition is true: run the
code In the block

OIST

16

the "if" statement

Do something only "if" true:

if <boolean> :

<something>
<something> I_ code block
Indentation

else:
<something else>
<something else>

— a code block is a group of code lines
with the same indentation

be careful that you use the exact same
number of spaces! Usually 4 per level.

- if the boolean condition is true: run the
code In the block

- "else:" optional
runs the "else" block if condition failed

OIST

17

the "if" statement

Do something only "if" true:

if <boolean> :

<something>
<something> I_ code block
Indentation

elif <boolean> :
<something>
<something>

else:
<something else>
<something else>

a code block is a group of code lines

with the same indentation

be careful that you use the exact same
number of spaces! Usually 4 per level.

If the boolean condition is true: run the

code in the block
"else:" optional

runs the "else" block if all conditions failed

"elif:" optional, and short for "else if".
only tested if the previous test fails
can have as many as you want

OIST

18

the "if" statement

Do Somethmg Only I" true: — a code block is a group of code lines

with the same indentation

X = -3 - be careful that you use the exact same
number of spaces! Usually 4 per level.

if x>0:

orint("positive”) - if the boolean condition is true: run the

code In the block

elif x<0: _

. . "else:" optional
print("negative”) P

runs the "else" block if all conditions failed

else:

print("zero” - "elif:" optional, and short for "else if".

only tested if the previous test fails

can have as many as you want

OIST 19

the "if" statement

Exercise: How do you test if a value is odd?

* Hint: '%' the remainder operator

— gives the remainder of a division

OIST 20

the "if" statement

Exercise: How do you test if a value is odd?

1f x%2 == 1:
print("odd")

IS 1 if the numerator is odd

* Hint: '%' the remainder operator
- the remainder of an integer division by 2

OIST

21

the "if" statement

Exercise: How do you test if a value is odd?

* Hint: '%' the remainder operator

- the remainder of an integer division by 2
is 1 if the numerator is odd

1f x%2 == 1:
print("odd")

— O — - "1"iIs True, so we don't need the test to

see ifit's 1.

it x%2:

: But it is often better to be explicit.
print("odd")

OIST 22

looping: the "while" statement

while <condition>:
<code block>
<code block>

1 =20

while 1<10:
print("val:", 1)
1 += 1

* Repeat a code block
"while" condition is true

break jump out of block
continue go back to top of block

* Example: loop from 0 to 9 and
print each value

OIST

23

OIST

Work with Python

How do we actually do things?
*iPython good for direct experimentation
or as a calculator

*iPython+ Interactive development — run,
code file debug and so on

*IDE Whole development environment

* Jupyter Interactive notebooks

Put your code in a file

Have your code in a file

* Much easier to edit as the code
becomes larger

* Can use the code as a regular program

The edit - (compile) - run cycle

1. edit your code in editor

2. run in iPython (or directly in terminal)
3. check results, play around

4. go back to 1.

OIST

25

Put your code in a file

1. Open another terminal

* log in, load python module
* Run either:

nano oddloop.py

or
gedit oddloop.py

* Edit your file

gedit:

* Go to preferences->editor, then set:

v tab width 4
v insert spaces instead of tabs

v enable automatic indentation

In general, you want tab width 4
and spaces for tabs in any editor

OIST

26

Put your code in a file

1. Open another terminal

* log in, load python module
* Run either:

nano oddloop.py
or
gedit oddloop.py

* Edit your file

1 =0

while 1<10:
print("val:", 1)
1 += 1

OIST

27

Put your code in a file

1. Open another terminal

* log in, load python module
* Run either:

nano oddloop.py
or

gedit oddloop.py

1 =0

while 1<10:
print("val:", 1)
1 +=

Run the code:

* Open another terminal

log in, load python module
* Run:

python3 oddloop.py
* Or, in iPython:
%run oddloop.py

OIST

28

IPython tips:

you can edit multi-line "cells"

* automatically indents blocks
* press enter on last line to run.

In [4]: while 1<10:
. print("val:", 1)
1 += 1

Advanced:

* %edit edits cells in vim editor
* %debug runs code in debugger

%run will run a python program

* Will stop at the end, let you examine
variables, etc

%run oddloop.py

%load will load a file as if you
had typed it in

* Can go back and edit, etc.

%load oddloop.py

29

OIST

Quick Exercise:

Print out the numbers from 0-9, saying if they're odd or even:

OIST

even:
odd:
even:
odd:
even:
odd:
even:
odd:
even:
odd:

OCoOoONOOUTPr WN /O

e Use "while" and "if"
e remember “%” to test if odd or even

30

Quick Exercise:

Print out the numbers from 0-9, saying if they're odd or even:

OIST

even:
odd:
even:
odd:
even:
odd:
even:
odd:
even:
odd:

OCoOoONOOUTPr WN /O

e Use "while" and "if"

e remember “%” to test if odd
i =20
while i<10:
if i%2 == 1;:
print("odd: ", 1)
else:
print("even:", 1)
1 += 1

or even

31

Strings

s = "hi world!” # a string
B te stri ith , s = 'hi world!’ # " or ' both work
quote strings with ” or orint(s)
o ' """ are multi-line strings hi world!
- use \ to escape characters s = '"I\'m\na string' # '\' escapes
. ' print(s) # characters
* \'and \" ==" and I'm
* \n == new line a string
e \t ==tab # multi-line strings
s = '"'first line

 \\ == the '\' character itself second line

print(s)
first line
second line

OIST 22

String interpolation

greeting = 'Hello {}!’'.format(‘World’))
print(greeting)
Hello World!

You can "fill in" values into a string
- mark places in the string with '{ }'

- use the 'format()' method to
set the value.

OIST

34

String interpolation

'one: {7} two: {}'.format(1,2)
one: 1 two: 2

"two: {17} onetwo: {0} {1} .format(1,2)
two: 2 onetwo: 1 2

"int: {0:5d} int: {0:05d}".format(123)
int: 123 int: 00123

' {0:8.2F}F {0:8.3e}" . format(1234.567)
float: 1234.57 1.23e+03

You can "fill in" values into a string
* mark places in the string with '{}'
+ use the 'format ()' method to
set the value.
+ {03} = use first argument to format ()

+ {:something} - format specifier
num - field width
.num - decimals
g,d,f,e,s... - data type

OIST

35

— use input () to ask for user input

- Many functions work on strings:

String-related functions and methods

- len(s) length of string
* int(s) convert string to int
© float(s) convert to float

- Strings have a lot of methods:

- convert text

- test what kind of text it is
- find substrings

- split strings

OIST

H1

5

Tr

2

Tr

42

s = input("name: ") # get user 1input
print("H1", s)

Janne

len(s) # string length

s.1salpha() # lots of methods

ue

s.find('nn") # find substring

'nn' in s # test substring

ue # inclusion

int("42") # convert to other
types

37

Substrings and indexing

!

s = "hi world!”

print(s[3])

W

print(s[3:6])

"wor’

print(s[-2]1)

)dl

! !

s=s[:3]+'W'+s[4:]

H HHHFH

H H

get character
at pos 3
from pos 3 to
before 6
index from end

Error!

create new string
instead

- get substrings with "[. . . 1"
- Index starts at 0
- [-x] index from end:

[-1] == last character
[x:y] == "from x to y-1"
:y] == [0:y]
(x:] == "from x to end”
[:] == the entire string

- can't change strings ("immutable")
* create copy instead

38

* alist

- ele
INC

— you can mix different types in a

of elements

ments can be any type,
luding lists.

single list

* append(), pop() adds and

removes elements to the end. Fast.

- insert(i) and pop(index) adds
and removes from middle or start

* much slower than append

OIST

Lists

e = []
a=1[1, 2, 3]
b = ['text’, [7, 1
a.append(7)
(1, 2, 3, 7]
elem = a.pop()
print(elem, a)
7 [1, 2, 3]
a.insert(1, 99)
[1, 99, 2, 3]
a.pop(1)
[1, 2, 3]

#
#

#
#

i

an empty list
a list of ints

.3]] # mixed list

add an element
to the end

remove and return
last element

add or remove from
middle of list

39

* Index list like with string
— [nl, [m:n], [n:] ...

Lists

l

5

a=1[1,2,3,4,5]
alo]

al1:3]

[2, 3]

al2:]

[3, 4, 5]

al:3]

[1, 2, 3]

al-1]

First element

a[1] and al[2]

to end

from beginning

count from back

OIST

40

Lists

* Index list like with string
— [nl, [m:n], [n:] ...
* Lists are mutable

* Many methods and functions:
— max(), min(), len(), sum() ...
- 1l.sort(), l.index(), 1.count()

* n in list - test for element existence

a=1_[1,2,3,4,5]
alo]

al1:3]
[2, 3]

1

al3] = 99

max(a)
99

a.sort()
[1, 2, 3, 5, 99]

5 1n a
True

First element

a[1] and al[2]

lists are mutable

sort in place

is 5 in a?

41

Lists: ranges and loops

for <var> in <iterable>: : - :
<do something with var> do Someth.mg' W”T‘ each list
element with 'for

g iX‘E‘Tp%eé 45 * the index variable is set to
for i in a: each element in the list in turn
.
print(1) range() creates a sequence
range tart t
for 1 in range(1,10): range(start, end, step)
print(i) " creates sequence

: start - fir lemen
create a list from a range st element

end - last element +1
a = list(range(1,10,2))

step - step size (optional)

OIST 42

Mini exercise: a list of squares

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

— Hints:
- list.append(element)
- range(start, end)
— write code in a file “squares.py”

— Test either from command line
- python3 squares.py

— or within ipython:

OIST

* %run squares.py

Create a list of squares of 1 to 10:

43

Mini exercise: a list of squares

Create empty list

Set 1 to each value in 1-10

calculate i**2, append
to the list

After the loop, print list

Create a list of squares of 1 to 10:

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

- Hints:
- list.append(element)
- range(start, end)
— write code in a file “squares.py”
- Test either from command line
- python3 squares.py

— or within ipython:
* %run squares.py

OIST

44

Mini exercise: a list of squares

Create empty list
squares = []

Set 1 to each value in 1-10
for 1 1n range(1,11):

calculate i**2, append
to the list
squares.append(i**2)

After the loop, print list
print(squares)

Create a list of squares of 1 to 10:

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

- Hints:
- list.append(element)
- range(start, end)
— write code in a file “squares.py”
- Test either from command line
- python3 squares.py

— or within ipython:
* %run squares.py

OIST

45

List Comprehensions

A common pattern:

1st = [1]
for x in <iterable>:
1f <condition>:
1st.append(<x comp>)

For example, our exercise:

squares = []
for x in range(1,11):
1f <condition>:
squares.append(x**2)

OIST

List Comprehensions

A common pattern: Write it shorter as:

1st = []

: , 1st = [<x comp> for x in <iter> 1if <cond>]
for x in <iterable>:

1f <condition>:
1st.append(<x comp>)

For example, our exercise:

squares = []
for x in range(1,11):
1f <condition>:
squares.append(x**2)

OIST

List Comprehensions

A common pattern:

1st = [1]
for x in <iterable>:
1f <condition>:
1st.append(<x comp>)

A

Write it shorter as:

1st = [<x comp> for x in <iter> if <cond>]

For example, our exercise:

squares = []
for x in range(1,11):
1f <condition>:
squares.append(x**2)

OIST

48

List Comprehensions

A common pattern:

Write it shorter as:

1st = [] Y
for x i1n <iterable>:
if <condition>:
1st.append(<x comp>)

A

1st = [<x comp> for x in <iter> if <cond>]

For example, our exercise:

squares = []
for x in range(1,11):
1f <condition>:
squares.append(x**2)

49

List Comprehensions

A common pattern:

Write it shorter as:

1st = [] Y

for x in <iterable>:

Ist = [<x comp> for x in <iter> if <cond>]

1f <condition>: -=
1st.append(<x comp>)

A

For example, our exercise:

squares = []
for x in range(1,11):
1f <condition>:
squares.append(x**2)

50

List Comprehensions

A common pattern:

Write it shorter as:

Ist = [] Y

for x in <iterable>:

Ist = [<x comp> for x in <iter> if <cond>]

1f <condition>: -=
1st.append(<x comp>)

A

For example, our exercise:

squares = []
for x in range(1,11):
1f <condition>:
squares.append(x**2)

Our exercise again:

squares = [x**2 for x in range(1,11)]

51

variables contain simple values:

Lists and simple values

1

a

99
int(a,b)

r

~ O 0 T WL
[

O
O
—_

a == 1
b == 1
a==99, b ==1

variables contain references to lists:

a = [1]

b = a

alo] = 99

print(a,b)
[99], [99]

a == [1]
b == [1]
a == [99], b == [99]

[1]

(1]

[99]

59

Lists and simple values

Without using . copy ()

[1]

a = [1] # a == [1]
b = a # b == [1]
alo] = 99 # a == [99], b == [99]
print(a,b)
[99]1, [99]
With . copy ()
a=1[1] # a == [1]
b =a.copy() # b == [1]
alo] = 99 # a == [99], b == [1]
print(a,b)
[99]1, [1]

(1]

[1]

[1]

[99]

(1]

62

Functions

functions encapsulate code

def <function name>(params):
<code block>

Docstring

* A string after the function definition with
documentation

Parameters

e parameters can have default values

* yOou can name parameters when calling a

function

return sets the return value

2.

0

5

def line(x, a=0, b=0):
"""line(x, a=0, b=0)
calculate ax+bh'"'’

return axx+b

line(2, 0.5, 1) # x=2, a=0.5, b=1

0
line(2) # a,b=0 default
line(2, b=5) # a=0, b=5

OIST

63

Functions

a.

d.

def func(x):
a =1 # local a
X +=1 # local parameter x
print("a:",a,"x:",x)

a=99 # global a
x=11 # global x
func(x)

1T x: 12 # local a and x

print("a:",a,”"x:",x)
99 x: 11 # global a and x

Parameters and variables

* parameters and local variables
are local to the function.

* Parameters copy the value, not the
parameter itself

(you can use global variables in a
function. But please don't.)

OIST

64

Functions

def listfunc(lst):
Ist[o] = 99

local list

print("list:", 1lst)

my_list = [0,1,2]
listfunc(my_list)
list: [99, 1, 2]

global list

print("list”, my_list)

list: [99, 1, 2]

ey

4

my_list 1st

[0, 1, 2]

Parameters and variables

* parameters and local variables
are local to the function.

* Parameters copy the value, not the
parameter itself

* you transfer a reference to lists

— functions can change the contents
of the list

OIST

65

Functions

Return values

* return any value with 'return'’
* can put return anywhere in the code

e A function without return returns None

* You can use 'None' yourself to signify the
lack of a value, etc.

def print_double(x):
print(x, x)

a = print_double(3)
33

print(a)
None

def print_if_exist(x=None):

1f x==None:

print("no value”)
else:

print(x)

OIST

66

Other structures

tuples

* like lists, but immutable
— faster, take less memory

dictionaries

* key - value pairs.

* key :immutable (string, numeric)
value : any kind of value

* No intrinsic order

* very fast, flexible

my_tuple = (1, 2, 3)
my_tuple[1]
2

—my—tuptett+—=—99—

my_dict = {'name’: 'Janne’,
‘age' : 22}

Error

my_dict['name’]
Janne

my_dict['numbers’']=[1, 2, 3]
for k,v in my_dict.items():
orint('{}: {}' .format(k,v))
age: 22
numbers: [1, 2, 3]
name: Janne

OIST

67

File 1/0

open file for reading or writing:

with open(<fname>, 'rw') as <var>:
<code block>

readline() - read one line
readlines() -read list of all lines in file
write(l) - write a string

writelines(1) - write all lines in list

open file for reading

with open('filename’,’'r') as f:
read all lines at once
lines = f.readlines()

read one line at a time

for line in f:
do something w. each line

write all lines to filename
with open(’'filename’,’'w’) as f:
f.writelines(lines)

f.writeline(l) writes one line

68

OIST

Next Session:

We will try out four useful things
right on the Deigo cluster:

* Use python modules
* Install python modules for your own use

* write a program that converts a file (a
Fasta file) from one format to another

* Write a program that creates a Slurm
job script, then submits it as a job.

69

	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 18
	Sida 19
	Sida 20
	Sida 21
	Sida 22
	Sida 23
	Sida 24
	Sida 25
	Sida 26
	Sida 27
	Sida 28
	Sida 29
	Sida 30
	Sida 31
	Sida 32
	Sida 34
	Sida 35
	Sida 37
	Sida 38
	Sida 39
	Sida 40
	Sida 41
	Sida 42
	Sida 43
	Sida 44
	Sida 45
	Sida 46
	Sida 47
	Sida 48
	Sida 49
	Sida 50
	Sida 51
	Sida 59
	Sida 62
	Sida 63
	Sida 64
	Sida 65
	Sida 66
	Sida 67
	Sida 68
	Sida 69

