
Introduction To Python Programming
I: The Python language

Jan Moren, SCDA

Python is High Level, Interpreted and Dynamic

– No memory management
– No system programming needed
– Complex data structures
– Extensive library of modules

(“batteries included”)

– Standalone programs
– Scripting language
– Interactive use
– Embeddable into applications
– OS and system agnostic

Useful everywhere
Written in or Extends Python:

PyMOL
NEST
Blender
HTSeq
...

TensorFlow
NEURON
Qiime
BUSCO
...

Run Python on:

Windows
Linux
OSX
Android

Supercomputers
Desktops
Microcontrollers

Focus on your problem,
not your code

Example: Replace text strings
in a list of files

• Python version below

3

import fileinput

files=["test1.txt", "test2.txt", "test3.txt"]

for line in fileinput.input(files, inplace=True):
 print(line.replace('Goodbye!', 'Hello!'), end='')

Python

Focus on your problem,
not your code

Example: Replace text strings
in a list of files

• Python version below
• C to the right

4

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include <sys/types.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <unistd.h>
#include <err.h>
#include <string.h>

char * find_match(const char *buf, const char * buf_end, const char *pat, size_t len)
{

ptrdiff_t i;
char *start = buf;
while (start + len < buf_end) {

for (i = 0; i < len; i++)
if (start[i] != pat[i]) break;

if (i == len) return (char *)start;
start++;

}
return 0;

}

int replace(const char *from, const char *to, const char *fname)
{
#define bail(msg) { warn(msg" '%s'", fname); goto done; }

struct stat st;
int ret = 0;
char *buf = 0, *start, *end;
size_t len = strlen(from), nlen = strlen(to);
int fd = open(fname, O_RDWR);

if (fd == -1) bail("Can't open");
if (fstat(fd, &st) == -1) bail("Can't stat");
if (!(buf = malloc(st.st_size))) bail("Can't alloc");
if (read(fd, buf, st.st_size) != st.st_size) bail("Bad read");

start = buf;
end = find_match(start, buf + st.st_size, from, len);
if (!end) goto done; /* no match found, don't change file */

ftruncate(fd, 0);
lseek(fd, 0, 0);
do {

write(fd, start, end - start); /* write content before match */
write(fd, to, nlen); /* write replacement of match */
start = end + len; /* skip to end of match */

/* find match again */
end = find_match(start, buf + st.st_size, from, len);

} while (end);

/* write leftover after last match */
if (start < buf + st.st_size)

write(fd, start, buf + st.st_size - start);

done:

if (fd != -1) close(fd);
if (buf) free(buf);
return ret;

}

int main()
{

const char * files[] = { "test1.txt", "test2.txt", "test3.txt" };

for (int i = 0; i < sizeof(files)/sizeof(char*); i++)
replace(”Goodbye!”, “Hello!”, files[i]);

return 0;
}

import fileinput

files=["test1.txt", "test2.txt", "test3.txt"]

for line in fileinput.input(files, inplace=True):
 print(line.replace('Goodbye!', 'Hello!'), end='')

Python

C

Let’s Run some Python

● Log in to Deigo

● load Python 3

● start iPython

6

We will use “ipython” for an interactive shell

ssh -X <your-name>@deigo.oist.jp

module load python/3.7.3

ipython3

History Of Python
— or —

Why are there two of them?!

Python 2
● Named after Monty Python
● released in 2000
● Huge success; many users,

lots of packages

● End of life 2020

→ never use it any longer

7

Python 3
● first released in 2008
● 3.5 onwards is now stable, complete,

supported

● We Recommend Python 3
for all future Python projects.

ssh -X <your-name>@deigo.oist.jp
module load python/3.7.3
ipython3

Example
Code comes in blocks
– marked by indentation, not

"{","}" or "begin", "end"

if, while, function defs etc. end
with ":", followed by a block

you don't need to declare
variable types

starts a comment

8

an example python program

def greeting(name, age):
 print("Hi {}.".format(name))

 if age>45:
 print("You must be very wise!")

here the main program starts
while True:
 name = input('your name (or quit) :')
 if name=='quit':
 break

 age = input("what's your age :")
 greeting(name, int(age))

print('Bye now!')

Example
Code comes in blocks
– marked by indentation, not

"{","}" or "begin", "end"

if, while, function defs etc. end
with ":", followed by a block

you don't need to declare
variable types

starts a comment

9

an example python program

def greeting(name, age):
 print("Hi {}.".format(name))

 if age>45:
 print("You must be very wise!")

here the main program starts
while True:
 name = input('your name (or quit) :')
 if name=='quit':
 break

 age = input("what's your age :")
 greeting(name, int(age))

print('Bye now!')

Example
Code comes in blocks
– marked by indentation, not

"{","}" or "begin", "end"

if, while, function defs etc. end
with ":", followed by a block

you don't need to declare
variable types

starts a comment

10

an example python program

def greeting(name, age):
 print("Hi {}.".format(name))

 if age>45:
 print("You must be very wise!")

here the main program starts
while True:
 name = input('your name (or quit) :')
 if name=='quit':
 break

 age = input("what's your age :")
 greeting(name, int(age))

print('Bye now!')

Example
Code comes in blocks
– marked by indentation, not

"{","}" or "begin", "end"

if, while, function defs etc. end
with ":", followed by a block

you don't need to declare
variable types

starts a comment

11

an example python program

def greeting(name, age):
 print("Hi {}.".format(name))

 if age>45:
 print("You must be very wise!")

here the main program starts
while True:
 name = input('your name (or quit) :')
 if name=='quit':
 break

 age = input("what's your age :")
 greeting(name, int(age))

print('Bye now!')

Numbers
Integers
– arbitrarily large

Floating point numbers
– 64 bit

● Complex numbers
– pair of floats

– use ‘j’ for imaginary part

12

 1+1 # integers
2
 1.5*2.5 # floating point
3.75
 5/3 # division
1.6666666666666667
 5//3 # integer division
1
 5%3 # remainder
2
 2.5**4 # exponentiation
39.0625
 4+3j # complex numbers
(4+3j)
 int(3.5) # convert types
3
 float(4)
4.0

Variables

13

 x = 1 # x is now an int
 y = 1.5 # y is a float
 z = 3+1j # z is a complex
 res = x+y*z # res is complex

 print("res:", res) # print the value
res: (5.5+1.5j)

 x = x+2 # increase x
 x += 2 # same thing

Variables
● stores a value
● don’t need to declare the type

– can force a type with type functions:

 x = 1 # x is an int
 type(x) # x is an int
int
 y = float(x) # y is a float
 type(y)
float
 y
1.0

Variables

14

 x = 1 # x is now an int
 y = 1.5 # y is a float
 z = 3+1j # z is a complex
 res = x+y*z # res is complex

 print("res:", res) # print the value
res: (5.5+1.5j)

 x = x+2 # increase x
 x += 2 # same thing

 res.real # an attribute
5.5
 res.conjugate() # a method
(5.5-1.5j)

Variables
● stores a value
● don’t need to declare the type

– can force a type with type functions

● most things (“objects”) in Python have
attributes and methods

– attribute: an associated value
– method: object-specific function

Booleans and comparisons

comparison operators
– all comparisons return True or False.

– "bool" is the type for True and False

– (True is 1, False is 0)

– "and", "or" and "not" combine
boolean values:

• a and b : true if a and b are true
• a or b : true if either a or b is true
• not a : true if a is false, false if a is true

15

 x = 5
 y = 3

 x > y # greater than?
True
 x == y # Equal? Note: two '=='
False
 x != y # Not equal?
True
 x <= y # smaller or equal?
False
 x==y or y>0 # either or
True
 x>0 and x<10 # both
True

 x = y<0 # can store booleans
 print(x)
False

the "if" statement

Do something only "if" true:

16

 if <boolean> :
 <something>
 <something>

code block

indentation

– a code block is a group of code lines
with the same indentation

• be careful that you use the exact same
number of spaces! Usually 4 per level.

– if the boolean condition is true: run the
code in the block

the "if" statement

Do something only "if" true:

17

 if <boolean> :
 <something>
 <something>

 else:
 <something else>
 <something else>

code block

indentation

– a code block is a group of code lines
with the same indentation

• be careful that you use the exact same
number of spaces! Usually 4 per level.

– if the boolean condition is true: run the
code in the block

– "else:" optional
• runs the "else" block if condition failed

the "if" statement

Do something only "if" true:

18

 if <boolean> :
 <something>
 <something>

 elif <boolean> :
 <something>
 <something>

 else:
 <something else>
 <something else>

code block

indentation

– a code block is a group of code lines
with the same indentation

• be careful that you use the exact same
number of spaces! Usually 4 per level.

– if the boolean condition is true: run the
code in the block

– "else:" optional
• runs the "else" block if all conditions failed

– "elif:" optional, and short for "else if".
• only tested if the previous test fails
• can have as many as you want

the "if" statement

Do something only "if" true:

19

x = -3

if x>0:
 print("positive")

elif x<0:
 print("negative")

else:
 print("zero")

– a code block is a group of code lines
with the same indentation

• be careful that you use the exact same
number of spaces! Usually 4 per level.

– if the boolean condition is true: run the
code in the block

– "else:" optional
• runs the "else" block if all conditions failed

– "elif:" optional, and short for "else if".
• only tested if the previous test fails
• can have as many as you want

the "if" statement

Exercise: How do you test if a value is odd?

20

● Hint: '%' the remainder operator
– gives the remainder of a division

the "if" statement

Exercise: How do you test if a value is odd?

21

if x%2 == 1:
 print("odd")

● Hint: '%' the remainder operator
– the remainder of an integer division by 2

is 1 if the numerator is odd

the "if" statement

Exercise: How do you test if a value is odd?

22

if x%2 == 1:
 print("odd")

● Hint: '%' the remainder operator
– the remainder of an integer division by 2

is 1 if the numerator is odd

– '1' is True, so we don't need the test to
see if it's 1.

But it is often better to be explicit. if x%2:
 print("odd")

— or —

looping: the "while" statement

23

i = 0
while i<10:
 print("val:", i)
 i += 1

● Example: loop from 0 to 9 and
print each value

while <condition>:
 <code block>
 <code block>

● Repeat a code block
"while" condition is true

break jump out of block
continue go back to top of block

Work with Python
How do we actually do things?

● iPython good for direct experimentation
or as a calculator

● iPython+ Interactive development – run,
code file debug and so on

● IDE Whole development environment

● Jupyter Interactive notebooks

Put your code in a file

25

 Have your code in a file
● Much easier to edit as the code

becomes larger
● Can use the code as a regular program

The edit - (compile) - run cycle

1. edit your code in editor
2. run in iPython (or directly in terminal)
3. check results, play around
4. go back to 1.

Put your code in a file

1. Open another terminal
• log in, load python module
• Run either:

or

• Edit your file

nano oddloop.py

gedit oddloop.py

gedit:

● Go to preferences->editor, then set:
✔ tab width 4
✔ insert spaces instead of tabs
✔ enable automatic indentation

In general, you want tab width 4
and spaces for tabs in any editor

26

Put your code in a file

27

i = 0
while i<10:
 print("val:", i)
 i += 1

1. Open another terminal
• log in, load python module
• Run either:

or

• Edit your file

nano oddloop.py

gedit oddloop.py

Put your code in a file

28

python3 oddloop.py

%run oddloop.py
i = 0
while i<10:
 print("val:", i)
 i += 1

Run the code:1. Open another terminal
• log in, load python module
• Run either:

or

nano oddloop.py

gedit oddloop.py

● Open another terminal

log in, load python module
● Run:

● Or, in iPython:

iPython tips:

29

%load oddloop.py

In [4]: while i<10:
 ...: print("val:", i)
 ...: i += 1

 %load will load a file as if you
 had typed it in

• Can go back and edit, etc.

 you can edit multi-line "cells"
• automatically indents blocks
• press enter on last line to run.

%run oddloop.py

Advanced:
• %edit edits cells in vim editor
• %debug runs code in debugger

 %run will run a python program
● Will stop at the end, let you examine

variables, etc

Quick Exercise:

Print out the numbers from 0-9, saying if they're odd or even:

30

even: 0
odd: 1
even: 2
odd: 3
even: 4
odd: 5
even: 6
odd: 7
even: 8
odd: 9

● Use "while" and "if"
● remember “%” to test if odd or even

Quick Exercise:

Print out the numbers from 0-9, saying if they're odd or even:

31

i = 0

while i<10:
 if i%2 == 1:
 print("odd: ", i)
 else:
 print("even:", i)

 i += 1

even: 0
odd: 1
even: 2
odd: 3
even: 4
odd: 5
even: 6
odd: 7
even: 8
odd: 9

● Use "while" and "if"
● remember “%” to test if odd or even

Strings

32

 s = "hi world!" # a string
 s = 'hi world!' # " or ' both work
 print(s)
hi world!

 s = 'I\'m\na string' # '\' escapes
 print(s) # characters
I'm
a string

 # multi-line strings
 s = '''first line
second line
'''
 print(s)
first line
second line

– quote strings with " or '
● ''' ... ''' are multi-line strings

– use \ to escape characters
● \' and \" == " and '
● \n == new line
● \t == tab
● \\ == the '\' character itself

String interpolation

34

 greeting = 'Hello {}!'.format(‘World’))
 print(greeting)
Hello World!

You can "fill in" values into a string
– mark places in the string with '{}'
– use the 'format()' method to

set the value.

String interpolation

35

You can "fill in" values into a string
• mark places in the string with '{}'
• use the 'format()' method to

set the value.

• {0} = use first argument to format()
• {:something} - format specifier

num - field width
.num - decimals
g,d,f,e,s... - data type

 'one: {} two: {}'.format(1,2)
one: 1 two: 2

 'two: {1} onetwo: {0} {1}'.format(1,2)
two: 2 onetwo: 1 2

 'int: {0:5d} int: {0:05d}'.format(123)
int: 123 int: 00123

 'f: {0:8.2f} {0:8.3e}'.format(1234.567)
float: 1234.57 1.23e+03

String-related functions and methods

37

 s = input("name: ") # get user input
 print("Hi", s)
Hi Janne

 len(s) # string length
5

 s.isalpha() # lots of methods
True

 s.find('nn') # find substring
2

 'nn' in s # test substring
True # inclusion

 int("42") # convert to other
42 # types

– use input() to ask for user input

– Many functions work on strings:
• len(s) length of string
• int(s) convert string to int
• float(s) convert to float

– Strings have a lot of methods:
• convert text
• test what kind of text it is
• find substrings
• split strings

Substrings and indexing

38

– get substrings with "[...]"
• index starts at 0
• [-x] index from end:

[-1] == last character
• [x:y] == "from x to y-1"
• [:y] == [0:y]
• [x:] == "from x to end"
• [:] == the entire string

– can't change strings ("immutable")
• create copy instead

 s = "hi world!"

 print(s[3]) # get character
'w' # at pos 3
 print(s[3:6]) # from pos 3 to
'wor' # before 6
 print(s[-2]) # index from end
'd'

 s[3] = 'W' # Error!

 s=s[:3]+'W'+s[4:] # create new string
 # instead

Lists

39

● a list of elements
– elements can be any type,

including lists.
– you can mix different types in a

single list

● append(), pop() adds and
removes elements to the end. Fast.
– insert(i) and pop(index) adds

and removes from middle or start
• much slower than append

 e = [] # an empty list
 a = [1, 2, 3] # a list of ints
 b = ['text', [7, 1.3]] # mixed list

 a.append(7) # add an element
[1, 2, 3, 7] # to the end

 elem = a.pop() # remove and return
 print(elem, a) # last element
7 [1, 2, 3]

 a.insert(1, 99) # add or remove from
[1, 99, 2, 3] # middle of list

a.pop(1)
[1, 2, 3]

Lists

40

● Index list like with string

– [n], [m:n], [n:] ...

●

 a = [1,2,3,4,5]
 a[0] # First element
1
 a[1:3] # a[1] and a[2]
[2, 3]

 a[2:] # to end
[3, 4, 5]

 a[:3] # from beginning
[1, 2, 3]

 a[-1] # count from back
5

Lists

41

● Index list like with string

– [n], [m:n], [n:] ...

● Lists are mutable

● Many methods and functions:
– max(), min(), len(), sum() ...

– l.sort(), l.index(), l.count()

● n in list - test for element existence

 a = [1,2,3,4,5]
 a[0] # First element
1
 a[1:3] # a[1] and a[2]
[2, 3]

 a[3] = 99 # lists are mutable

 max(a)
99

 a.sort() # sort in place
[1, 2, 3, 5, 99]

 5 in a # is 5 in a?
True

Lists: ranges and loops

42

do something with each list
element with 'for'

• the index variable is set to
each element in the list in turn

range() creates a sequence
range(start, end, step)

• creates sequence

start - first element

end - last element +1

step - step size (optional)

 for <var> in <iterable>:
 <do something with var>

 # example:
 a = [1,2,3,4,5]
 for i in a:
 print(i)

 # range
 for i in range(1,10):
 print(i)

 # create a list from a range

 a = list(range(1,10,2))

Mini exercise: a list of squares

43

Create a list of squares of 1 to 10:
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

– Hints:
• list.append(element)
• range(start, end)

– write code in a file “squares.py”
– Test either from command line

• python3 squares.py

– or within ipython:
• %run squares.py

Mini exercise: a list of squares

44

 # Create empty list

 # Set i to each value in 1-10

 # calculate i**2, append
 # to the list

 # After the loop, print list

Create a list of squares of 1 to 10:
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

– Hints:
• list.append(element)
• range(start, end)

– write code in a file “squares.py”
– Test either from command line

• python3 squares.py

– or within ipython:
• %run squares.py

Mini exercise: a list of squares

45

 # Create empty list
 squares = []

 # Set i to each value in 1-10
 for i in range(1,11):

 # calculate i**2, append
 # to the list
 squares.append(i**2)

 # After the loop, print list
 print(squares)

Create a list of squares of 1 to 10:
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

– Hints:
• list.append(element)
• range(start, end)

– write code in a file “squares.py”
– Test either from command line

• python3 squares.py

– or within ipython:
• %run squares.py

List Comprehensions

 lst = []
 for x in <iterable>:
 if <condition>:
 lst.append(<x comp>)

A common pattern:

For example, our exercise:

 squares = []
 for x in range(1,11):
 # if <condition>:
 squares.append(x**2)

List Comprehensions

 lst = []
 for x in <iterable>:
 if <condition>:
 lst.append(<x comp>)

A common pattern:

For example, our exercise:

 squares = []
 for x in range(1,11):
 # if <condition>:
 squares.append(x**2)

Write it shorter as:

 lst = [<x comp> for x in <iter> if <cond>]

List Comprehensions

48

 lst = []
 for x in <iterable>:
 if <condition>:
 lst.append(<x comp>)

A common pattern:

For example, our exercise:

 squares = []
 for x in range(1,11):
 # if <condition>:
 squares.append(x**2)

Write it shorter as:

 lst = [<x comp> for x in <iter> if <cond>]

List Comprehensions

49

 lst = []
 for x in <iterable>:
 if <condition>:
 lst.append(<x comp>)

A common pattern:

For example, our exercise:

 squares = []
 for x in range(1,11):
 # if <condition>:
 squares.append(x**2)

Write it shorter as:

 lst = [<x comp> for x in <iter> if <cond>]

List Comprehensions

50

 lst = []
 for x in <iterable>:
 if <condition>:
 lst.append(<x comp>)

A common pattern:

For example, our exercise:

 squares = []
 for x in range(1,11):
 # if <condition>:
 squares.append(x**2)

Write it shorter as:

 lst = [<x comp> for x in <iter> if <cond>]

List Comprehensions

51

 lst = []
 for x in <iterable>:
 if <condition>:
 lst.append(<x comp>)

A common pattern:

For example, our exercise:

 squares = []
 for x in range(1,11):
 # if <condition>:
 squares.append(x**2)

Write it shorter as:

 lst = [<x comp> for x in <iter> if <cond>]

Our exercise again:

 squares = [x**2 for x in range(1,11)]

Lists and simple values

59

variables contain simple values:

 a = 1 # a == 1
 b = a # b == 1
 a = 99 # a == 99, b == 1
 print(a,b)
99, 1

1a

99a 1b

variables contain references to lists:

 a = [1] # a == [1]
 b = a # b == [1]
 a[0] = 99 # a == [99], b == [99]
 print(a,b)
[99], [99]

a [1]

1a 1b

a b [1]

a b [99]

Lists and simple values

62

Without using .copy()

 a = [1] # a == [1]
 b = a # b == [1]
 a[0] = 99 # a == [99], b == [99]
 print(a,b)
[99], [99]

a b [1]

With .copy()

 a = [1] # a == [1]
 b = a.copy() # b == [1]
 a[0] = 99 # a == [99], b == [1]
 print(a,b)
[99], [1]

a [1]

a b
[1]

[1]

a b
[99]

[1]

Functions

63

 def line(x, a=0, b=0):
 '''line(x, a=0, b=0)
 calculate ax+b'''

 return a*x+b

 line(2, 0.5, 1) # x=2, a=0.5, b=1
2.0

 line(2) # a,b=0 default
0

 line(2, b=5) # a=0, b=5
5

functions encapsulate code
def <function name>(params):
 <code block>

Docstring
● A string after the function definition with

documentation

Parameters
● parameters can have default values
● you can name parameters when calling a

function

return sets the return value

Functions

64

 def func(x):
 a = 1 # local a
 x +=1 # local parameter x
 print("a:",a,"x:",x)

 a=99 # global a
 x=11 # global x
 func(x)
a: 1 x: 12 # local a and x

 print("a:",a,"x:",x)
a: 99 x: 11 # global a and x

Parameters and variables
● parameters and local variables

are local to the function.
● Parameters copy the value, not the

parameter itself

(you can use global variables in a
function. But please don't.)

Functions

65

 def listfunc(lst):
 lst[0] = 99 # local list
 print("list:", lst)

 my_list = [0,1,2] # global list
 listfunc(my_list)
list: [99, 1, 2]

 print("list", my_list)
list: [99, 1, 2]

Parameters and variables
● parameters and local variables

are local to the function.
● Parameters copy the value, not the

parameter itself

● you transfer a reference to lists

→ functions can change the contents
of the list

my_list
[0, 1, 2]

lst

Functions

66

 def print_double(x):
 print(x, x)

 a = print_double(3)
3 3

 print(a)
None

 def print_if_exist(x=None):
 if x==None:
 print("no value")
 else:
 print(x)

Return values
● return any value with 'return'

● can put return anywhere in the code

● A function without return returns None

● You can use 'None' yourself to signify the
lack of a value, etc.

Other structures

67

 my_tuple = (1, 2, 3)
 my_tuple[1]
2

 my_tuple[1] = 99 # Error

 my_dict = {'name': 'Janne',
 'age' : 22}

 my_dict['name']
Janne

 my_dict['numbers']=[1,2,3]
 for k,v in my_dict.items():
 print('{}: {}'.format(k,v))
age: 22
numbers: [1, 2, 3]
name: Janne

tuples
● like lists, but immutable

→ faster, take less memory

dictionaries
● key - value pairs.
● key : immutable (string, numeric)

value : any kind of value
● No intrinsic order
● very fast, flexible

File I/O

68

 # open file for reading
 with open('filename','r') as f:

read all lines at once
 lines = f.readlines()

 # read one line at a time
 for line in f:
 # do something w. each line

 # write all lines to filename
 with open('filename','w') as f:
 f.writelines(lines)

 # f.writeline(l) writes one line

open file for reading or writing:
with open(<fname>, 'rw') as <var>:
 <code block>

readline() - read one line
readlines() - read list of all lines in file
write(l) - write a string
writelines(l) - write all lines in list

Next Session:

69

We will try out four useful things
right on the Deigo cluster:
● Use python modules

● Install python modules for your own use

● write a program that converts a file (a
Fasta file) from one format to another

● Write a program that creates a Slurm
job script, then submits it as a job.

	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 18
	Sida 19
	Sida 20
	Sida 21
	Sida 22
	Sida 23
	Sida 24
	Sida 25
	Sida 26
	Sida 27
	Sida 28
	Sida 29
	Sida 30
	Sida 31
	Sida 32
	Sida 34
	Sida 35
	Sida 37
	Sida 38
	Sida 39
	Sida 40
	Sida 41
	Sida 42
	Sida 43
	Sida 44
	Sida 45
	Sida 46
	Sida 47
	Sida 48
	Sida 49
	Sida 50
	Sida 51
	Sida 59
	Sida 62
	Sida 63
	Sida 64
	Sida 65
	Sida 66
	Sida 67
	Sida 68
	Sida 69

