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Python is High Level, Interpreted and Dynamic

– No memory management
– No system programming needed
– Complex data structures
– Extensive library of modules 

(“batteries included”)

– Standalone programs
– Scripting language
– Interactive use
– Embeddable into applications
– OS and system agnostic

Useful everywhere
Written in or Extends Python:

PyMOL
NEST
Blender
HTSeq
...

TensorFlow
NEURON
Qiime
BUSCO
...

Run Python on:

Windows
Linux
OSX
Android

Supercomputers
Desktops
Microcontrollers



Focus on your problem, 
not your code

Example: Replace text strings
in a list of files

• Python version below
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import fileinput

files=["test1.txt", "test2.txt", "test3.txt"]

for line in fileinput.input(files, inplace=True):
    print(line.replace('Goodbye!', 'Hello!'), end='') 

Python



Focus on your problem, 
not your code

Example: Replace text strings
in a list of files

• Python version below
• C to the right
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#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include <sys/types.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <unistd.h>
#include <err.h>
#include <string.h>
 
char * find_match(const char *buf, const char * buf_end, const char *pat, size_t len)
{

ptrdiff_t i;
char *start = buf;
while (start + len < buf_end) {

for (i = 0; i < len; i++)
if (start[i] != pat[i]) break;

 
if (i == len) return (char *)start;
start++;

}
return 0;

}
 
int replace(const char *from, const char *to, const char *fname)
{
#define bail(msg) { warn(msg" '%s'", fname); goto done; }

struct stat st;
int ret = 0;
char *buf = 0, *start, *end;
size_t len = strlen(from), nlen = strlen(to);
int fd = open(fname, O_RDWR);

 
if (fd == -1) bail("Can't open");
if (fstat(fd, &st) == -1) bail("Can't stat");
if (!(buf = malloc(st.st_size))) bail("Can't alloc");
if (read(fd, buf, st.st_size) != st.st_size) bail("Bad read");

 
start = buf;
end = find_match(start, buf + st.st_size, from, len);
if (!end) goto done; /* no match found, don't change file */

 
ftruncate(fd, 0);
lseek(fd, 0, 0);
do {

write(fd, start, end - start); /* write content before match */
write(fd, to, nlen); /* write replacement of match */
start = end + len; /* skip to end of match */

/* find match again */
end = find_match(start, buf + st.st_size, from, len);

} while (end);
 

/* write leftover after last match */
if (start < buf + st.st_size)

write(fd, start, buf + st.st_size - start);
 
done:

if (fd != -1) close(fd);
if (buf) free(buf);
return ret;

}
 
int main()
{

const char * files[] = { "test1.txt", "test2.txt", "test3.txt" };
 

for (int i = 0; i < sizeof(files)/sizeof(char*); i++)
replace(”Goodbye!”, “Hello!”, files[i]);

return 0;
}

import fileinput

files=["test1.txt", "test2.txt", "test3.txt"]

for line in fileinput.input(files, inplace=True):
    print(line.replace('Goodbye!', 'Hello!'), end='') 

Python

C



Let’s Run some Python

● Log in to Deigo

● load Python 3

● start iPython
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We will use “ipython” for an interactive shell

ssh -X <your-name>@deigo.oist.jp

module load python/3.7.3

ipython3



History Of Python
— or — 

Why are there two of them?!

Python 2
● Named after Monty Python
● released in 2000
● Huge success; many users, 

lots of packages

● End of life 2020

→ never use it any longer

7

Python 3
● first released in 2008
● 3.5 onwards is now stable, complete, 

supported

● We Recommend Python 3 
for all future Python projects.

ssh -X <your-name>@deigo.oist.jp
module load python/3.7.3
ipython3



Example
Code comes in blocks
– marked by indentation, not

"{","}" or "begin", "end"

if, while, function defs etc. end
with ":", followed by a block

you don't need to declare
variable types

# starts a comment
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# an example python program

def greeting(name, age):
    print("Hi {}.".format(name))

    if age>45:
        print("You must be very wise!")

# here the main program starts
while True:
    name = input('your name (or quit) :')
    if name=='quit':
        break

    age = input("what's your age :")
    greeting(name, int(age))

print('Bye now!')
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# an example python program

def greeting(name, age):
    print("Hi {}.".format(name))

    if age>45:
        print("You must be very wise!")

# here the main program starts
while True:
    name = input('your name (or quit) :')
    if name=='quit':
        break

    age = input("what's your age :")
    greeting(name, int(age))

print('Bye now!')



Numbers
Integers
– arbitrarily large

Floating point numbers
– 64 bit

● Complex numbers
– pair of floats

– use ‘j’ for imaginary part
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  1+1 # integers
2
  1.5*2.5 # floating point
3.75
  5/3 # division
1.6666666666666667
  5//3 # integer division
1
  5%3 # remainder
2
  2.5**4 # exponentiation
39.0625
  4+3j # complex numbers
(4+3j)
  int(3.5) # convert types
3
  float(4)
4.0



Variables
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  x = 1 # x is now an int
  y = 1.5 # y is a float
  z = 3+1j # z is a complex
  res = x+y*z # res is complex

  print("res:", res) # print the value
res: (5.5+1.5j)

  x = x+2 # increase x
  x += 2 # same thing

Variables
● stores a value
● don’t need to declare the type

– can force a type with type functions:

  x = 1 # x is an int
  type(x) # x is an int
int
  y = float(x) # y is a float
  type(y)
float
  y
1.0



Variables
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  x = 1 # x is now an int
  y = 1.5 # y is a float
  z = 3+1j # z is a complex
  res = x+y*z # res is complex

  print("res:", res) # print the value
res: (5.5+1.5j)

  x = x+2 # increase x
  x += 2 # same thing

  res.real # an attribute
5.5
  res.conjugate() # a method
(5.5-1.5j)

Variables
● stores a value
● don’t need to declare the type

– can force a type with type functions

● most things (“objects”) in Python have 
attributes and methods

– attribute: an associated value
– method: object-specific function



Booleans and comparisons

comparison operators
– all comparisons return True or False.

– "bool" is the type for True and False

– (True is 1, False is 0)

– "and", "or" and "not" combine
boolean values:

• a and b : true if a and b are true
• a or b : true if either a or b is true
• not a : true if a is false, false if a is true
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  x = 5
  y = 3

  x > y # greater than?
True
  x == y # Equal? Note: two '=='
False
  x != y # Not equal?
True
  x <= y # smaller or equal?
False
  x==y or y>0 # either or
True
  x>0 and x<10 # both
True

  x = y<0 # can store booleans
  print(x)
False



the "if" statement

Do something only "if" true:
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 if <boolean> :
     <something>
     <something>

 

code block

indentation

– a code block is a group of code lines 
with the same indentation

• be careful that you use the exact same
number of spaces! Usually 4 per level.

– if the boolean condition is true: run the 
code in the block



the "if" statement

Do something only "if" true:
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 if <boolean> :
     <something>
     <something>

 
 else:
     <something else>
     <something else>

code block

indentation

– a code block is a group of code lines 
with the same indentation

• be careful that you use the exact same
number of spaces! Usually 4 per level.

– if the boolean condition is true: run the 
code in the block

– "else:" optional
• runs the "else" block if condition failed



the "if" statement

Do something only "if" true:
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 if <boolean> :
     <something>
     <something>

 elif <boolean> :
     <something>
     <something>

 else:
     <something else>
     <something else>

code block

indentation

– a code block is a group of code lines 
with the same indentation

• be careful that you use the exact same
number of spaces! Usually 4 per level.

– if the boolean condition is true: run the 
code in the block

– "else:" optional
• runs the "else" block if all conditions failed

– "elif:" optional, and short for "else if".
• only tested if the previous test fails
• can have as many as you want



the "if" statement

Do something only "if" true:
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x = -3 

if x>0:
    print("positive")

elif x<0:
    print("negative")

else:
    print("zero")

– a code block is a group of code lines 
with the same indentation

• be careful that you use the exact same
number of spaces! Usually 4 per level.

– if the boolean condition is true: run the 
code in the block

– "else:" optional
• runs the "else" block if all conditions failed

– "elif:" optional, and short for "else if".
• only tested if the previous test fails
• can have as many as you want



the "if" statement

Exercise: How do you test if a value is odd?
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● Hint: '%' the remainder operator
– gives the remainder of a division



the "if" statement

Exercise: How do you test if a value is odd?
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if x%2 == 1:
    print("odd")

● Hint: '%' the remainder operator
– the remainder of an integer division by 2 

is 1 if the numerator is odd



the "if" statement

Exercise: How do you test if a value is odd?
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if x%2 == 1:
    print("odd")

● Hint: '%' the remainder operator
– the remainder of an integer division by 2 

is 1 if the numerator is odd

– '1' is True, so we don't need the test to
see if it's 1. 

But it is often better to be explicit.    if x%2:
    print("odd")

— or —



looping: the "while" statement
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i = 0
while i<10:
    print("val:", i)
    i += 1

● Example: loop from 0 to 9 and
print each value

while <condition>:
    <code block>
    <code block>

● Repeat a code block 
"while" condition is true

break jump out of block
continue go back to top of block



Work with Python
How do we actually do things?

● iPython good for direct experimentation
or as a calculator

● iPython+ Interactive development – run, 
code file debug and so on

● IDE Whole development environment

● Jupyter Interactive notebooks 



Put your code in a file
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 Have your code in a file
● Much easier to edit as the code 

becomes larger
● Can use the code as a regular program

The edit - (compile) - run cycle

1. edit your code in editor
2. run in iPython (or directly in terminal)
3. check results, play around
4. go back to 1.



Put your code in a file

1. Open another terminal
• log in, load python module
• Run either:

or

• Edit your file

nano oddloop.py

gedit oddloop.py

gedit:

● Go to preferences->editor, then set:
✔ tab width 4
✔ insert spaces instead of tabs
✔ enable automatic indentation

In general, you want tab width 4
and spaces for tabs in any editor

26



Put your code in a file
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i = 0
while i<10:
    print("val:", i)
    i += 1

1. Open another terminal
• log in, load python module
• Run either:

or

• Edit your file

nano oddloop.py

gedit oddloop.py



Put your code in a file
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python3 oddloop.py

%run oddloop.py
i = 0
while i<10:
    print("val:", i)
    i += 1

Run the code:1. Open another terminal
• log in, load python module
• Run either:

or

nano oddloop.py

gedit oddloop.py

● Open another terminal

log in, load python module
● Run:

● Or, in iPython:



iPython tips:
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%load oddloop.py

In [4]: while i<10:
   ...:     print("val:", i)
   ...:     i += 1

 %load will load a file as if you 
 had typed it in 

• Can go back and edit, etc.

 you can edit multi-line "cells"
• automatically indents blocks
• press enter on last line to run.

%run oddloop.py

Advanced:
• %edit edits cells in vim editor
• %debug runs code in debugger

 %run will run a python program
● Will stop at the end, let you examine 

variables, etc



Quick Exercise:

Print out the numbers from 0-9, saying if they're odd or even:
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even: 0
odd:  1
even: 2
odd:  3
even: 4
odd:  5
even: 6
odd:  7
even: 8
odd:  9

● Use "while" and "if"
● remember “%” to test if odd or even



Quick Exercise:

Print out the numbers from 0-9, saying if they're odd or even:
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i = 0

while i<10:
    if i%2 == 1:
        print("odd: ", i)
    else:
        print("even:", i)
    
    i += 1

even: 0
odd:  1
even: 2
odd:  3
even: 4
odd:  5
even: 6
odd:  7
even: 8
odd:  9

● Use "while" and "if"
● remember “%” to test if odd or even



Strings
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  s = "hi world!" # a string
  s = 'hi world!' # " or ' both work
  print(s)
hi world!

  s = 'I\'m\na string' # '\' escapes
  print(s) # characters
I'm
a string  

  # multi-line strings
  s = '''first line
second line
'''
  print(s)
first line
second line

– quote strings with " or '
● ''' ... ''' are multi-line strings

– use \ to escape characters
● \' and \" == " and ' 
● \n == new line
● \t == tab
● \\ == the '\' character itself



String interpolation
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  greeting = 'Hello {}!'.format(‘World’))
  print(greeting)
Hello World!

You can "fill in" values into a string
– mark places in the string with '{}'
– use the 'format()' method to

set the value.



String interpolation
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You can "fill in" values into a string
• mark places in the string with '{}'
• use the 'format()' method to

set the value.

• {0} = use first argument to format()
• {:something} - format specifier

num - field width
.num - decimals
g,d,f,e,s... - data type

  'one: {} two: {}'.format(1,2)
one: 1 two: 2

  'two: {1} onetwo: {0} {1}'.format(1,2)
two: 2 onetwo: 1 2

  'int: {0:5d} int: {0:05d}'.format(123)
int:   123 int: 00123

  'f: {0:8.2f} {0:8.3e}'.format(1234.567)
float:  1234.57 1.23e+03



String-related functions and methods
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  s = input("name: ") # get user input
  print("Hi", s)
Hi Janne

  len(s) # string length
5

  s.isalpha() # lots of methods
True

  s.find('nn') # find substring
2

  'nn' in s # test substring
True # inclusion

  int("42") # convert to other
42 # types

– use input() to ask for user input

– Many functions work on strings:
• len(s) length of string
• int(s) convert string to int
• float(s) convert to float

– Strings have a lot of methods:
• convert text
• test what kind of text it is
• find substrings
• split strings 



Substrings and indexing
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– get substrings with "[...]"
• index starts at 0
• [-x] index from end:

[-1] == last character
• [x:y] == "from x to y-1"
• [:y] == [0:y]
• [x:] == "from x to end"
• [:] == the entire string

– can't change strings ("immutable")
• create copy instead

  s = "hi world!"

  print(s[3])  # get character
'w'  # at pos 3
  print(s[3:6])  # from pos 3 to 
'wor'  # before 6
  print(s[-2])  # index from end
'd'

  s[3] = 'W'  # Error!

  s=s[:3]+'W'+s[4:]  # create new string
 # instead



Lists
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● a list of elements
– elements can be any type, 

including lists.
– you can mix different types in a 

single list

● append(), pop() adds and 
removes elements to the end. Fast.
– insert(i) and pop(index) adds

and removes from middle or start
• much slower than append

  e = [] # an empty list
  a = [1, 2, 3] # a list of ints
  b = ['text', [7, 1.3]] # mixed list

  a.append(7) # add an element 
[1, 2, 3, 7] # to the end

  elem = a.pop() # remove and return
  print(elem, a) # last element
7 [1, 2, 3]

  a.insert(1, 99) # add or remove from
[1, 99, 2, 3] # middle of list

a.pop(1)
[1, 2, 3]



Lists
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● Index list like with string

– [n], [m:n], [n:] ...

●

  a = [1,2,3,4,5]
  a[0] # First element
1
  a[1:3] # a[1] and a[2]
[2, 3]

  a[2:] # to end
[3, 4, 5]

  a[:3] # from beginning
[1, 2, 3]

  a[-1] # count from back
5



Lists
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● Index list like with string

– [n], [m:n], [n:] ...

● Lists are mutable

● Many methods and functions:
– max(), min(), len(), sum() ...

– l.sort(), l.index(), l.count()

● n in list - test for element existence

  a = [1,2,3,4,5]
  a[0] # First element
1
  a[1:3] # a[1] and a[2]
[2, 3]

  a[3] = 99 # lists are mutable

  max(a)
99

  a.sort() # sort in place
[1, 2, 3, 5, 99]

  5 in a # is 5 in a?
True



Lists: ranges and loops
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do something with each list 
element with 'for'

• the index variable is set to 
each element in the list in turn

range() creates a sequence
range(start, end, step)

• creates sequence

start - first element

end  - last element +1

step - step size (optional)

  for <var> in <iterable>:
      <do something with var>

  # example:
  a = [1,2,3,4,5]
  for i in a:
       print(i)

  # range
  for i in range(1,10):
      print(i)

  # create a list from a range

  a = list(range(1,10,2))



Mini exercise: a list of squares
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Create a list of squares of 1 to 10:
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

– Hints:
• list.append(element)
• range(start, end) 

– write code in a file “squares.py”
– Test either from command line

• python3 squares.py

– or within ipython: 
• %run squares.py



Mini exercise: a list of squares
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  # Create empty list
  

  # Set i to each value in 1-10 
  
      
      # calculate i**2, append
      # to the list
      

  # After the loop, print list
  

Create a list of squares of 1 to 10:
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

– Hints:
• list.append(element)
• range(start, end) 

– write code in a file “squares.py”
– Test either from command line

• python3 squares.py

– or within ipython: 
• %run squares.py



Mini exercise: a list of squares
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  # Create empty list
  squares = []

  # Set i to each value in 1-10 
  for i in range(1,11):
      
      # calculate i**2, append
      # to the list
      squares.append(i**2)

  # After the loop, print list
  print(squares)

Create a list of squares of 1 to 10:
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

– Hints:
• list.append(element)
• range(start, end) 

– write code in a file “squares.py”
– Test either from command line

• python3 squares.py

– or within ipython: 
• %run squares.py



List Comprehensions

  lst = []
  for x in <iterable>:
    if <condition>:
      lst.append(<x comp>)

A common pattern:

For example, our exercise:

  squares = []
  for x in range(1,11):
    # if <condition>:
      squares.append(x**2)
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List Comprehensions
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List Comprehensions
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List Comprehensions
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  lst = []
  for x in <iterable>:
    if <condition>:
      lst.append(<x comp>)
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List Comprehensions
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  lst = []
  for x in <iterable>:
    if <condition>:
      lst.append(<x comp>)

A common pattern:

For example, our exercise:

  squares = []
  for x in range(1,11):
    # if <condition>:
      squares.append(x**2)

Write it shorter as:

 lst = [<x comp> for x in <iter> if <cond>]

Our exercise again:

 squares = [x**2 for x in range(1,11)]



Lists and simple values
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variables contain simple values:

  a = 1 # a == 1
  b = a # b == 1
  a = 99 # a == 99, b == 1
  print(a,b)
99, 1

1a

99a 1b

variables contain references to lists:

  a = [1] # a == [1]
  b = a # b == [1]
  a[0] = 99 # a == [99], b == [99]
  print(a,b)
[99], [99]

a [1]

1a 1b

a b [1]

a b [99]



Lists and simple values

62

Without using .copy()

  a = [1] # a == [1]
  b = a # b == [1]
  a[0] = 99 # a == [99], b == [99]
  print(a,b)
[99], [99]

a b [1]

With .copy()

  a = [1]   # a == [1]
  b = a.copy()   # b == [1]
  a[0] = 99   # a == [99], b == [1]
  print(a,b)
[99], [1]

a [1]

a b
[1]

[1]

a b
[99]

[1]



Functions
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  def line(x, a=0, b=0):
      '''line(x, a=0, b=0)
      calculate ax+b'''

      return a*x+b

  line(2, 0.5, 1) # x=2, a=0.5, b=1
2.0

  line(2) # a,b=0 default
0

  line(2, b=5) # a=0, b=5
5

functions encapsulate code
def <function name>(params):
    <code block>

Docstring
● A string after the function definition with 

documentation

Parameters 
● parameters can have default values
● you can name parameters when calling a 

function

return sets the return value



Functions
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  def func(x):
      a = 1 # local a
      x +=1 # local parameter x
      print("a:",a,"x:",x)

  a=99 # global a
  x=11 # global x
  func(x)
a: 1 x: 12 # local a and x

  print("a:",a,"x:",x)
a: 99 x: 11 # global a and x

Parameters and variables
● parameters and local variables

are local to the function.
● Parameters copy the value, not the 

parameter itself

(you can use global variables in a 
function. But please don't.)



Functions
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  def listfunc(lst):
      lst[0] = 99 # local list
      print("list:", lst)
  

  my_list = [0,1,2] # global list
  listfunc(my_list)
list: [99, 1, 2]

  print("list", my_list)
list: [99, 1, 2]

Parameters and variables
● parameters and local variables

are local to the function.
● Parameters copy the value, not the 

parameter itself

● you transfer a reference to lists

→ functions can change the contents 
of the list

my_list
[0, 1, 2]

lst
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  def print_double(x):
      print(x, x)

  a = print_double(3)
3 3

  print(a)
None

  def print_if_exist(x=None):
      if x==None:
          print("no value")
      else:
          print(x)

Return values
● return any value with 'return'

● can put return anywhere in the code

● A function without return returns None

● You can use 'None' yourself to signify the 
lack of a value, etc.
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  my_tuple = (1, 2, 3)
  my_tuple[1]
2

  my_tuple[1] = 99 # Error

  my_dict = {'name': 'Janne',
             'age' : 22}
  
  my_dict['name']
Janne

  my_dict['numbers']=[1,2,3]
  for k,v in my_dict.items():
      print('{}: {}'.format(k,v))
age: 22
numbers: [1, 2, 3]
name: Janne

tuples
● like lists, but immutable

→ faster, take less memory

dictionaries
● key - value pairs. 
● key    : immutable (string, numeric)

value : any kind of value
● No intrinsic order
● very fast, flexible
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  # open file for reading
  with open('filename','r') as f:

# read all lines at once
      lines = f.readlines()

      # read one line at a time
      for line in f:
          # do something w. each line

  # write all lines to filename
  with open('filename','w') as f:
      f.writelines(lines)

  # f.writeline(l) writes one line

open file for reading or writing:
with open(<fname>, 'rw') as <var>:
    <code block>

readline() - read one line
readlines() - read list of all lines in file
write(l) - write a string
writelines(l) - write all lines in list
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We will try out four useful things 
right on the Deigo cluster:
● Use python modules

● Install python modules for your own use

● write a program that converts a file (a 
Fasta file) from one format to another

● Write a program that creates a Slurm 
job script, then submits it as a job.
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