
HPC and Scientific Computing at OIST
II: Using the Clusters

Jan Moren, SCDA

Materials and Feedback

Our GROUPS site:

https://groups.oist.jp/scs/

Under “Documentation” is a link to the training session page:

https://groups.oist.jp/scs/introduction-hpc-and-scientific-computing-0

You will find links to the presentation slides and to the complete
cluster introduction manual.

Also, a link to the feedback page. Please fill it in!

The Deigo cluster

ssh

The Deigo cluster

ssh

srun

The Deigo cluster

The Deigo cluster

scp
rsync

7

Set Up SSH
● Any OIST member can use the HPC resources. Apply here:

– https://groups.oist.jp/scs/request-access
Select “Open Resources”

● OSX Users
– You should already have SSH
– Install “XQuartz” for graphics (reboot after installation)

● Windows Users
– Install free “MobaXTerm”. Can use SSH and graphical applications.

● Linux and BSD Users
– You already have everything.

https://groups.oist.jp/scs/connect-clusters

8

Let’s Log In

Log in to Deigo:

 $ ssh -X <your-id>@deigo.oist.jp

copy the slides, example scripts and
programs to your home:

 $ cp -r /apps/share/training/Intro .

Handy Tip: Avoid typing with tab completion:

Press once to fill in unique parts. Press twice to see
matching alternatives. This works with directories,
files, programs and parameters.

$ cp -r /a<tab>/sh<tab>/t<tab>/I<tab> .

Press the tab key to fill in the name

Later, please go through ”Getting Started” and “Connecting
to the Clusters” pages in the documentation

Using the Cluster

Deigo Storage
/home Your home.
 Small (<50GB), slow.
 Use for: configuration files, source

/flash In-cluster file system
 Not big (10TB/unit), fast
 Use for: running jobs

/bucket Long-term storage file system
 Big, backed up
 read-only from computing nodes
 Use for: storing data

Comspace
 5TB/unit

Share storage across units,
restricted storage etc.

Modules

We provide most applications and versions through modules.

The ‘module’ command takes subcommands to search, list and use the
modules that are installed.

module av List available modules.

With modules we can offer you multiple versions of applications and libraries.

$ module av # list available modules. Also ‘ml av’

-------------------------------- /apps/.metamodules81 ----------------------
 amd-modules (L) intel-modules sango-legacy-modules user-modules

-------------------------------- /apps/.modulefiles81 ----------------------
 BUSCO/4.1.2 (D) cmake/3.18.1 matlab/R2019a (D)
 Gaussian/09RE01R2 comsol/52 metabat/2.12.1
 … … …

Modules
module load Load a module. Either a specific version or the latest one:

$ module load intel
$ module load julia/1.3.1

module list Show loaded modules:

$ module li
Currently Loaded Modules:
 1) intel/2019_update5 2) julia/1.3.1

module unload Remove one module
module purge Remove all loaded modules

$ module unload julia
$ module purge
$ module li
No modules loaded

$ ml intel
$ ml julia/1.3.1

$ ml
Currently Loaded Modules:
 1) intel/2019_update5 2) julia/1.3.1

$ ml -julia
$ ml purge
$ ml
No modules loaded

Modules
$ ml help # command help for the ‘ml’ and ‘module’ commands
Usage: module [options] sub-command [args ...]

Options:
 -h -? -H --help This help message
...
$ ml help julia # find out what a module does

-------------- Module Specific Help for "julia/1.4.1"--------------------------
A high-level, high-performance dynamic programming language for technical
computing. You can consider it a modern, high-performance replacement to MATLAB
or a numerical-focused alternative to the more general Python ecosystem.

$ ml spider julia # search for a module
...
$ ml key compiler # free-form keyword search

Modules
amd-modules intel-modules

sango-legacy-modulesbioinfo-ugrp-modules

Separate module areas:

 The default area
most user software

 “amd-modules” and “intel-modules”
modules built specifically for one CPU
- Intel compiler is in “intel-modules”
but useful for all CPUs

 “sango-legacy-modules”
the old Sango modules
the “sango” container.

 “bioinfo-ugrp-modules”
user-managed
bioinformatics modules

Modules
amd-modules intel-modules

use module areas by loading and unloading:

$ module load intel-modules
$ module av
------------------------- /apps/.intel-modulefiles81 --------------------------
 fftw.gcc/3.3.5 intel.mpi/2019_update5
---------------------------- /apps/.metamodules81 -----------------------------
 amd-modules intel-modules (L) user-modules

---------------------------- /apps/.modulefiles81 -----------------------------
 BUSCO/3.0.2 hmmer/3.1b2
 BUSCO/4.0.6 igv/2.3.82
$ module load intel.mpi

sango-legacy-modulesbioinfo-ugrp-modules

All your jobs and storage on one page:
https://highsci.oist.jp

Our documentation start page:
 https://groups.oist.jp/scs/documentation

SCDA

ask-scda
Ask questions, report problems:

ask-scda@oist.jp

Open Hours
Ask about anything, online or in person:
groups.oist.jp/scs/open-hours

Slurm
● Slurm manages all cluster hardware resources:

● partitions Sets of nodes that belong together
● nodes Computing nodes in the cluster, including type,

size and architecture
● cores CPU cores in a node
● memory All memory in all nodes
● GPU GPUs and other special hardware

● Slurm accepts job submissions and queues them.
● Slurm allocates resources, starts jobs and keeps

track of resource usage.

srun

Let’s run a simple job:

$ cd Intro/code
$ srun -p short -t 1:00 --mem=10M -c 1 ./pi_serial

srun

Let’s run a simple job:

$ cd Intro/code
$ srun -p short -t 1:00 --mem=10M -c 1 ./pi_serial

We gave srun these options:

-p The partition we want to use (short)
-t Amount of time we wanted (one minute)
--mem Amount of memory (10 megabytes)
-c The number of cores (1)
./pi_serial The program (pi_serial) in the current directory (./)

srun

Let’s run a simple job: Handy tip: If we add a ‘&’ to the end of a
command, we don’t have to wait for it to
finish (but we need to stay logged in):

$ srun -t 1:00 --mem=10M -c 1 ./pi_serial &

$ cd Intro/code
$ srun -p short -t 1:00 --mem=10M -c 1 ./pi_serial

We gave srun these options:

-p The partition we want to use (short)
-t Amount of time we wanted (one minute)
--mem Amount of memory (10 megabytes)
-c The number of cores (1)
./pi_serial The program (pi_serial) in the current directory (./)

Slurm
We can specify time and memory in a number of different ways.

You can specify seconds, but Slurm will ignore any time
resolution smaller than one minute.

Specify time:
10 10 minutes
10:00 10 minutes
5:30:00 5 hours, 30 minutes
3-12 3 days, 12 hours
1-6:30:00 1 day, 6 hours, 30 minutes

Specify memory:
500K 500 KB
1M 1 MB or 1024 KB
1G 1 GB or 1024 MB
1T 1 TB or 1024 GB

Interactive Jobs
You can run interactive applications right on the cluster

Two new options:
--x11 Allows applications to display graphics
--pty Connects keyboard and terminal directly to the application

$ srun -t 1:00:00 -c 8 --mem=10G --x11 --pty bash

Now treat your nodes and cores as your own virtual workstation:

$ module load R
$ R
…
> summary(Nile)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 456.0 798.5 893.5 919.4 1032.0 1370.0
> scatter.smooth(Nile, col="blue", lpars=list(col="red", lwd=3))

squeue and scancel

$ srun -p compute -t 5:00 -c 1 -n 1 sleep 2m &
$ squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 637797 compute sleep jan-more R 0:03 1 deigo012010

Let’s see what a regular job looks like with squeue:

You can format the output in many ways — see the manpage!

Cancel all jobs with name “sleep”:

$ scancel -n sleep

Cancel all your jobs:

$ scancel -u $USER # these do the
$ scancel -u jan-moren # same thing

$ scancel -t PENDING -u $USER

$ scancel 637797

Cancel the job by job ID:

Combine: cancel your pending jobs:

Ruse

● samples data every 10s
● saves info in a “.ruse” file
$ module load ruse
$ srun -t 5:00 --mem=1G -p short ruse sleep 1m
…
$ cat sleep-30511.ruse
Time: 00:01:00
Memory: 0.7 MB
Cores: 1
Total_procs: 1
Active_procs: 0
Proc(%):

$ ruse --help
...
 -s, --steps Print each sample step
 -t, --time=SECONDS Sample every SECONDS (defa

you can change the sampling rate and
record change over time:

ruse measures memory, cores and time

$ srun -t 5:00 -c 4 -p short ruse -st1 ./svd.py

 time mem processes process usage
 (secs) (MB) tot actv (sorted, %CPU)
 1 545.5 7 7 33 16 15 13 2 2 2
 2 549.1 7 4 99 98 98 96
. . .
 19 791.8 7 4 99 97 95 92
 20 1083.6 7 4 88 88 88 88
 21 1121.8 7 4 99 98 98 96
 22 1121.7 7 4 99 99 98 95

Time: 00:00:23
Memory: 1.1 GB
Cores: 4
Total_procs: 7
Active_procs: 7
Proc(%): 95.9 94.4 93.6 91.7 0.1 0.1 0.1

Example: see details of an SVD calculation:

Serial, Shared memory, and MPI jobs
We need three kind of resources:
Cores and nodes
Memory
Time

We have four kinds of jobs:

Serial A single process using a single thread.
Part of an “embarassingly parallel” job.

Shared memory A single process with multiple threads.
Also called multithreaded. Fine-grained parallel.

MPI Multiple processes with a single thread. Coarse-
grained parallel, or distributed.

Hybrid Multiple processes using multiple threads. A
combination of shared memory and MPI.

Serial Job
— single process, single thread

Simple data processing tasks,
copying files, some scripts

Simple Python, Matlab programs

Allocate:
● One process (called “task”)
● One core (called “cpu”)
● Per-node memory

--ntasks -n Number of tasks (processes). Set to 1

--cpus-per-task -c Number of cores per task. Set to 1

--mem Memory per node.

$ srun -p short -t 1:00 --mem=1G -c 1 -n 1 ./pi_serial

Shared memory Job
— single process, multiple threads

Most scientific software.

Numerical Python, Matlab and R programs

Allocate:
● One process
● Multiple cores, up to the

maximum for a node
● Per-node memory

--ntasks -n Number of tasks (processes). Set to 1

--cpus-per-task -c Number of cores per task.

--mem Memory per node.

$ srun -p short -t 1:00 --mem=1G -c 4 -n 1 ./pi_omp

Shared memory Job
— single process, multiple threads

Most scientific software.

Numerical Python, Matlab and R programs

Allocate:
● One process
● Multiple cores, up to the

maximum for a node
● Per-node memory

$ srun -p short -t 1:00 --mem=1G -c 4 -n 1 ./pi_omp

--ntasks -n Number of tasks (processes). Set to 1

--cpus-per-task -c Number of cores per task.

--mem Memory per node.

 Handy tip: If you take all cores in a node, nobody else can use the node

 If you ask for all memory, nobody else can use the node

if you can spare a bit of memory and a few cores
 → high-throughput jobs can use that very efficiently

MPI Job
— Multiple processes, single thread

Scalable scientific software.

Simulators, MD and weather modeling, etc.

Allocate:
● Many processes
● Single core per process
● Per-core memory

--ntasks -n Number of tasks (processes).

--cpus-per-task -c Number of cores per task. Set to 1

--mem-per-cpu Memory per core.

--mpi=pmix Make Slurm start the MPI job for us

$ srun -p short --mpi=pmix -t 1:00 --mem-per-cpu=1G -c 1 -n 3 ./pi_mpi

MPI Job

--ntasks -n Number of tasks (processes).

--cpus-per-task -c Number of cores per task. Set to 1

--mem-per-cpu Memory per core.

--mpi=pmix Make Slurm start the MPI job for us

$ srun -p short --mpi=pmix -t 1:00 --mem-per-cpu=1G -c 1 -n 3 ./pi_mpi

NOTE:
Instructions may tell you to use ‘mpirun’, ‘mpiexec’ or similar

You can start MPI programs that way, but there are
problems scheduling them with SLURM.

→ Use ‘--mpi=pmix’ instead if you can!

Hybrid Job
— Multiple processes, multiple threads

Fastest, most efficient way to run
on very large systems

Allocate:
● processes equal to number of

nodes
● All cores on each node
● Per-node memory

--ntasks -n Number of tasks (processes).

--cpus-per-task -c All cores per node.

--mem Memory per node

--mpi=pmix Make Slurm start the MPI job for us

$ srun -p short --mpi=pmix -t 1:00 --mem=1G -c 4 -n 3 <some program>

Batch Jobs
A batch job is a command script that runs a job.
It’s a text file with commands.
Compare with srun:

#!/bin/bash

#SBATCH -p short
#SBATCH -t 1:00
#SBATCH --mem=1G
#SBATCH -c 1
#SBATCH -n 1

./pi_serial

batch_example.slurm

$ sbatch batch_example.slurm

$ srun -p short -t 1:00 --mem=1G -c 1 -n 1 ./pi_serial

You run the script with ‘sbatch’:

‘#’ are comments in the bash shell

‘#SBATCH’ tells Slurm these are option lines

Tells the system this is a Bash script

The commands we want to run

Batch Jobs
A batch script is just a text file.
– lines beginning with “#SBATCH” are job settings, read by SLURM
– When your job starts, each line is run as if you typed it on the command line
– Everything after “#” are comments and ignored when your job runs
– Create and edit with nano (simple) or gedit (graphical):

#!/bin/bash

#SBATCH -p short
#SBATCH -t 1:00
#SBATCH --mem=1G
#SBATCH -c 1
#SBATCH -n 1

./pi_serial

● ‘#’ are comments in the bash shell
● ‘#SBATCH’ tells Slurm these are

option lines

Tells the system this is a Bash script

The shell commands we want to run

$ gedit batch_example.slurm

Batch Jobs

#!/bin/bash

#SBATCH -p short
#SBATCH -t 1:00
#SBATCH --mem=1G
#SBATCH -c 1
#SBATCH -n 1

./pi_serial

Batch jobs are the very best way to run jobs.

Benefits:
● You can submit the job, then log out

– Slurm queues the job, and will
start it when there are resources.

– Slurm can email you when it’s done

Batch Jobs
Batch jobs are the very best way to run jobs.

Benefits:
● You can submit the job, then log out

– Slurm queues the job, and will
start it when there are resources.

– Slurm can email you when it’s done

● The script is reliable
– Reuse and resubmit without forgetting any steps or

typing errors
– keep handy scripts around

#!/bin/bash

#SBATCH -p short
#SBATCH -t 1:00
#SBATCH --mem=1G
#SBATCH -c 1
#SBATCH -n 1

./pi_serial

Batch Jobs
Batch jobs are the very best way to run jobs.

Benefits:
● You can submit the job, then log out

– Slurm queues the job, and will
start it when there are resources.

– Slurm can email you when it’s done

● The script is reliable
– Reuse and resubmit without forgetting any steps or

typing errors
– keep handy scripts around

● It’s a record of your process
– Keep it in git, or store a copy with your results to keep a

record of how you produced it.

#!/bin/bash

#SBATCH -p short
#SBATCH -t 1:00
#SBATCH --mem=1G
#SBATCH -c 1
#SBATCH -n 1

./pi_serial

Batch Jobs
We have some new useful options:

#SBATCH --job-name=Myjob
#SBATCH --output=Myjob-%j.out

#SBATCH --error=Myjob-%j.err

--job-name -J Give your job a name

--output -o File for job output

(--error -e File for job error output)

● --job-name is useful to manage your job

● --output sets the output file name.

– The default ouput file name is “slurm-<job ID number>.out”.
Use ‘%j’ for the job ID, and ‘%u’ for your user name.

● Normally errors go into the output file. If you set ‘--error’, they go
into a separate error file instead.

Note: Normally you should not use a separate error file. it
makes finding errors more difficult.

Batch Jobs

Get an email when your job is done:

#SBATCH --mail-type=BEGIN,FAIL
#SBATCH --mail-user=name@oist.jp

--mail-type send email about your job

--mail-user your email address

● --mail-type sets when Slurm will email you:

BEGIN Your job began running
END Your job finished
FAIL Your job failed for some reason
ALL Any of different events

● --mail-user sets the email address (Only OIST email).

Batch Jobs

You can put almost any commands in the script:

#!/bin/bash
#SBATCH --partition short
#SBATCH --job-name=R_job
#SBATCH --output=R_%j.out
#SBATCH --time=10:00
#SBATCH --mem=2G
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=1

module load R

echo “stats for 1e8 normal random values:”

Rscript -e “summary(rnorm(1e8,0,1))”

Rscript.slurm

$ sbatch Rscript.slurm

$ squeue

Check progress with “squeue”:

Submit with ‘sbatch’

module load R

Tip: always put module commands in the
script. That way you never forget to load
the modules you need

Batch Jobs
Shared memory batch job script

#!/bin/bash
#SBATCH --partition=short
#SBATCH --job-name=omp_job
#SBATCH --output=omp_%j.out
#SBATCH --time=10:00
#SBATCH --mem=1G
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=8

echo “cores:” $OMP_NUM_THREADS
./pi_omp

pi_omp.slurm

Shared memory jobs run on a single node.
● Set the total memory with --mem.
● One node, one task (= one process), but we will

use 8 cores.
● The OMP_NUM_THREADS variable contains the

number of cores.

$ sbatch pi_omp.slurm
$ sbatch -c 1 pi_omp.slurm
$ sbatch -c 16 pi_omp.slurm

Handy Tip: We can set options on the command
line too. They override the settings in the script file.

So, set default values in the script, then change for
each job.

Batch Jobs
MPI batch job script

#!/bin/bash
#SBATCH --job-name=mpi_job
#SBATCH --partition=short
#SBATCH --output=mpi_%j.out
#SBATCH --time=10:00
#SBATCH --mem-per-cpu=1G
#SBATCH --ntasks=8
#SBATCH --cpus-per-task=1

module load openmpi.gcc/4.0.3
srun --mpi=pmix ./pi_mpi

pi_mpi.slurm MPI jobs run N copies of the program, each
doing part of the job.

● eight tasks, one core per task.
● Set the memory per core.
● With “--mpi=pmix” we let slurm start and

manage our MPI task.

● You can use srun inside a batch job. This is
called a job step.

We can’t use the “--mpi” option in sbatch itself
so we need to use a job step for mpi jobs.

Job steps are really useful for lots of things.$ sbatch pi_mpi.slurm

Batch Jobs
MPI batch job script

#!/bin/bash
#SBATCH --job-name=mpi_job
#SBATCH --partition=short
#SBATCH --output=mpi_%j.out
#SBATCH --time=10:00
#SBATCH --mem-per-cpu=1G
#SBATCH --ntasks=8
#SBATCH --cpus-per-task=1

module load openmpi.gcc/4.0.3
mpirun -np $SLURM_NPROCS ./pi_mpi

pi_mpi.slurm MPI jobs run N copies of the program, each
doing part of the job.

● eight tasks, one core per task.
● Set the memory per core.
● With “--mpi=pmix” we let slurm start and

manage our MPI task.

● Sometimes MPI apps won’t start with Slurm

● currently, this includes Intel MPI programs
● You can still use “mpirun” instead

$ sbatch pi_mpi.slurm

Exercise!
We have a Python program:

svd.py

 Make a Slurm batch script
 that runs this program

1. Use an editor such as nano or gedit
2. Set at least:

cores memory
running time partition

3. Load the python module

Start Nano like this:

$ nano svd.slurm
no mouse support, but shift+arrows marks
areas

^k = “control” key plus "k" = cut
^u = paste
^o = save
^x = exit
M-u = “alt” key plus "u" = undo

#!/bin/bash
#SBATCH -p ???
#SBATCH -t ???
#SBATCH -c ???
#SBATCH --mem= ???

load python module

run svd.py in current folder

Tips:

Template batch script:

One solution:

Slurm file:
#!/bin/bash
#SBATCH -p compute
#SBATCH -t 10:00
#SBATCH -c 1
#SBATCH --mem=8G

load python module
module load python/3.7.3

run svd.py in current folder
./svd.py

● Time, cores and memory are
suggestions.
➔ your best guess depends on

what you will be running – use
“ruse” to measure it.

● Always specify the version
when you load a module

- Load the Ruse module

- Add ruse in front of your program:

ruse ./svd.py

- svd.py is fast, so set the sample time
to 1 second:

ruse -t 1 ./svd.py
- Add "-C epyc" to Slurm settings

#SBATCH -C epyc

1. Run the job with one core
• see how much memory and

time it takes

2. Try with more cores

NOTE: run multiple times for each core
setting

What seems to be the best core
setting for this program?

Part 2 (you don’t need to do this):

Find the optimal number of cores

1. Change your script: 2. test the run time:

The script

Slurm file:

#!/bin/bash
#SBATCH -p compute
#SBATCH -C epyc
#SBATCH -t 10:00
#SBATCH -c 1
#SBATCH --mem=4G

module load python/3.7.3 ruse/2.0

ruse -t 1 ./svd.py

Quickly change the core setting
on the command line:

$ sbatch -c 16 svd.slurm

-C epyc makes sure you use the
AMD CPUs (use "-C xeon" for
intel).

See output with "less" or "cat":

$ cat svd.py-12345.ruse

Min value, ten runs each

Execution time over cores

Speedup by cores (red is ideal)
Scaling of svd.py

Data Workflow

workflow
● Keep your research data on Bucket
● Start your job from Home or Flash:

1. Read data from Bucket

2. Write data to Flash

3. Copy results back to Bucket

● Clean up: delete all from Flash

Batch Job template for Deigo

#!/bin/bash
#SBATCH --partition short
#SBATCH --time=0-1
#SBATCH --mem=20G

#create a temporary directory in Flash
tempdir=$(mktemp -d /flash/MyunitU/myprog.XXXX)
cd $tempdir

#run the job
./pi_serial >output.txt

#copy results to bucket, delete temp dir
scp output.txt deigo:/bucket/MyunitU/
rm -r $tempdir

We read data from Bucket, and save output to
Flash. Finally we save the output and clean up

● Create a temporary directory in /flash
● mktemp -d creates a unique directory. XXXX

is replaced with random characters.
● Save the directory name in tempdir

● Go to tempdir, then run our code there

● We use scp to copy our results to Bucket
● /bucket is not writeable on compute nodes
● scp copies files over the network

● Delete tempdir and everything inside.

job_template.slurm

SCDA Open Hours

We want your feedback:
https://groups.oist.jp/scs/introduction-hpc-and-scientific-computing

15:30 — 17:30, Lab 2, room B648

: highsci.oist.jp

Combine Short jobs

 ~24 minwork work work workFour 4min jobs

Combine multiple short jobs into one

work work work work ~18 minOne 16min job

● You are more efficient!
The shorter your jobs, the more you save

● less Slurm activity bursts
Spend time computing, not starting or stopping

● fewer jobs in total
less strain on Slurm

my-program in-01.dat

my-program in-01.dat
my-program in-02.dat
my-program in-03.dat
my-program in-04.dat

Array Jobs

Array jobs run a set of jobs with different parameters.

● option ‘--array‘ specifies a list of numbers:

 1-10 from 1 to 10 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
 1,4-6,10 1, 4 to 6, then 10 (1, 4, 5, 6, 10)
 0-16:5 every 5th value from 0 to 16 (0, 5, 10, 15)

● Slurm submits your script as one job for each index
● Shell variable SLURM_ARRAY_TASK_ID is set to the current index.
● For --output filenames, %A = job ID; %a = array index.

#!/bin/bash
#SBATCH --partition short
#SBATCH --time=1:00
#SBATCH --array=1-5
#SBATCH --output=arr_%A-%a.out

echo ${SLURM_ARRAY_TASK_ID}

Array Jobs

#!/bin/bash
#SBATCH --job-name=array_ex
#SBATCH --partition short
#SBATCH --time=10:00
#SBATCH --array=1-5
#SBATCH --output=arr_%A-%a.out

echo ${SLURM_ARRAY_TASK_ID}

array_example.slurm

We run 5 array jobs. The output is a file arr*out for each job.

#!/bin/bash
#SBATCH --job-name …
…

echo 1

array_ex 1

#!/bin/bash
#SBATCH --job-name …
…

echo 2

array_ex 2

#!/bin/bash
#SBATCH --job-name …
…

echo 5

array_ex 5

. . .

Remember:
● Do not run compute jobs on the login nodes. That includes interactive programs

such as MATLAB. Use srun and sbatch.

● Always specify the memory and time that you need. And remember, the less you
use, the faster your job will get resources.

● Clean up /flash and remove temporary files when you’re finished

● Do not submit thousands of long running jobs, or lots of very short jobs. It will
affect the scheduler. If you need to do so, please contact us first.

● Build your programs on an AMD node. Programs built on an Intel node
(including the login nodes) may fail to run on AMD.

● Give us attribution. This gives us the resources we need to provide more storage
and new computing.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 25
	Slide 28
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 63
	Slide 65
	Slide 66
	Slide 67
	Slide 71

