HPC and Scientific Computing at OIST
ll: Using the Clusters

Jan Moren, SCDA /zm\

OIST

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY
MR 2 BT EBERE

Materials and Feedback

Our GROUPS site:
https://groups.oist. jp/scs/

Under “Documentation” is a link to the training session page:

https://groups.oist. jp/scs/introduction-hpc-and-scientific-computing-0

You will find links to the presentation slides and to the complete
cluster introduction manual.

Also, a link to the feedback page. Please fill it in!

OIST

The Deigo cluster

Node

Core

Core

Core

Core

Node Node Login
Nodo

: :
| core JICRIIN Core I

OIST

The Deigo cluster

Core

Core

Aowapy

Core

—
o
o
@

Node Login

| Node

Core

fowap
Aowap

Core login3

Core loging

-
o
o
@

OIST

The Deigo cluster

Deigo

—
o
o
@

e /flash

Core
Core

Core

Core

Node Login
L
-

OIST

The Deigo cluster

Node

Core
Core
Core

Core

Aowap

Y

Deigo

Node

Core
Core
Core

Core

Core
Core
Core

Core

pd
(o]
o
@

Aowap

=
o
Q
@

Core

Core

fowap

Core

Core

——

Login
Node

login1

login3
logind

OIST

Set Up SSH

* Any OIST member can use the HPC resources. Apply here:

- https://groups.oist. jp/scs/request-access
Select “Open Resources”

« OSX Users
- You should already have SSH
- Install “XQuartz” for graphics (reboot after installation)

 Windows Users
- Install free “MobaXTerm”. Can use SSH and graphical applications.

* Linux and BSD Users
- You already have everything.

https://groups.oist.jp/scs/connect-clusters

OIST

Let's Log In

: ; Handy Tip: Avoid typing with tab completion:
Log in to Deigo: y lip yping P

$ ssh -X <your-id>@deigo.oist.jp $ cp -r /a<tab>/sh<tab>/t<tab>/I<tab> .

copy the slides, example scripts and \ K f /
programs to your home: Press the tab key to fill in the name

L. Press once to fill in unique parts. Press twice to see
$ cp -r /apps/share/training/Intro . matching alternatives. This works with directories,
files, programs and parameters.

Later, please go through "Getting Started” and “Connecting
to the Clusters” pages in the documentation

OIST

Using the Cluster

Deigo Storage

/home Your home.
Small (<50GB), slow.
Use for: configuration files, source

/flash In-cluster file system
Not big (10TB/unit), fast
Use for: running jobs

/bucket Long-term storage file system
Big, backed up
read-only from computing nodes
Use for: storing data

Comspace
5TB/unit

Share storage across units,
restricted storage etc.

Modules

We provide most applications and versions through modules.

With modules we can offer you multiple versions of applications and libraries.

The ‘module’ command takes subcommands to search, list and use the
modules that are installed.

module av List available modules.

$ module av # list available modules. Also ‘ml av’

-------------------------------- /apps/.metamodules81 ----------------------
amd-modules (L) intel-modules sango-legacy-modules user-modules

-------------------------------- /apps/.modulefiles81 ----------------------
BUSC0/4.1.2 (D) cmake/3.18.1 matlab/R2019a (D)
Gaussian/0Q9REQ1R2 comsol/52 metabat/2.12.1

OIST

Modules

module load Load a module. Either a specific version or the latest one:
$ module load intel $ ml intel
$ module load julia/1.3.1 $ ml julia/1.3.1
module list Show loaded modules:
$ module 1i $ ml
Currently Loaded Modules: Currently Loaded Modules:
1) intel/2019_update5 2) julia/1.3.1 1) intel/2019_update5 2) julia/1.3.1
module unload Remove one module
module purge Remove all loaded modules
$ module unload julia $ ml -julia
$ module purge $ ml purge
$ module 1li $ ml
No modules loaded No modules loaded

OIST

Modules

$ ml help # command help for the ‘ml’ and ‘module’ commands
Usage: module [options] sub-command [args ...]
Options:
-h -? -H --help This help message
$ ml help julia # find out what a module does

-------------- Module Specific Help for "julia/1.4.1"--------------------------
A high-level, high-performance dynamic programming language for technical
computing. You can consider it a modern, high-performance replacement to MATLAB
or a numerical-focused alternative to the more general Python ecosystem.

$ ml spider julia # search for a module

$ ml key compiler # free-form keyword search

OIST

Modules

amd-modules

intel-modules

bioinfo-ugrp-modules

sango-legacy-modules

Separate module areas:

¢ The default area
most user software

¢ “amd-modules” and “intel-modules”
modules built specifically for one CPU

- Intel compiler is in “intel-modules”
but useful for all CPUs

¢ “sango-legacy-modules”

the old Sango modules
the “sango” container.

¢ “bioinfo-ugrp-modules”
user-managed
bioinformatics modules

OIST

Modules

amd-modules intel-modules

bioinfo-ugrp-modules sango-legacy-modules

use module areas by loading and unloading:

$ module load intel-modules
$ module av
------------------------- /apps/.intel-modulefiles81 --------------------------

fftw.gcc/3.3.5 intel.mpi/2019_update5
---------------------------- /apps/.metamodules81 -----------------------------
amd-modules intel-modules (L) user-modules

---------------------------- /apps/.modulefiles81 -----------------------------
BUSC0/3.0.2 hmmer/3.1b2
BUSCO/4.0.6 igv/2.3.82

$ module load intel.mpi
OIST

Ask questions, report problems:
ask-scda@oist. jp

4}{9[»5(,{ ask-scda

All your jobs and storage on one page:

https://highsci.oist. jp

Open Hours
Ask about anything, online or in person: S C DA
groups.oist. jp/scs/open-hours

https://groups.oist. jp/scs/documentation

Our documentation start page:

Slurm

* Slurm manages all cluster hardware resources:

* partitions Sets of nodes that belong together

* nodes Computing nodes in the cluster, including type,
size and architecture

e cores CPU cores in a node

* memory All memory in all nodes

- GPU GPUs and other special hardware

* Slurm accepts job submissions and queues them.

* Slurm allocates resources, starts jobs and keeps
track of resource usage.

OIST

Srun

Let’s run a simple job:

$ cd Intro/code
$ srun -p short -t 1:00 --mem=10M -c 1 ./pi_serial

OIST

Srun

Let’s run a simple job:

$ cd Intro/code

$ srun -p short -t 1:00 --mem=10M -c 1 ./pi_serial

We gave srun these options:

./pi_serial

The partition we want to use (short)

Amount of time we wanted (one minute)

Amount of memory (10 megabytes)

The number of cores (1)

The program (pi_serial) in the current directory (./)

OIST

Srun

Let’s run a simple job: Handy tip: If we add a ‘&’ to the end of a
command, we don’t have to wait for it to

$ cd Intro/code finish (but we need to stay logged in):

$ srun -p short -t 1:00 --mem=10M -c 1 ./pi_serial) i
$ srun -t 1:00 --mem=10M -c 1 ./pi_serial &

We gave srun these options:

-p The partition we want to use (short)

-t Amount of time we wanted (one minute)
--mem Amount of memory (10 megabytes)

-C The number of cores (1)

./pi_serial The program (pi_serial) in the current directory (./)

OIST

Slurm

We can specify time and memory in a number of different ways.

Specify time: Specify memory:

10 10 minutes 500K 500 KB

10:00 10 minutes 1M 1 MB or 1024 KB
5:30:00 5 hours, 30 minutes 1G 1 GB or 1024 MB
3-12 3 days, 12 hours 1T 1 TB or 1024 GB

1-6:30:00 1 day, 6 hours, 30 minutes

You can specify seconds, but Slurm will ignore any time
resolution smaller than one minute.

OIST

Interactive Jobs

You can run interactive applications right on the cluster

Two new options:
--x11 Allows applications to display graphics

--pty Connects keyboard and terminal directly to the application

$ srun -t 1:00:00 -c 8 --mem=10G --x11 --pty bash

Now treat your nodes and cores as your own virtual workstation:

$ module load R
$R

> summary(Nile)
Min. 1st Qu. Median Mean 3rd Qu. Max.
456.0 798.5 893.5 919.4 1032.0 1370.0
> scatter.smooth(Nile, col="blue", lpars=list(col="red", lwd=3))

Nile

600 800 1000 1200 1400

1880

1900

1920

Time

1940

1960

OIST

squeue and scancel

Let’s see what a regular job looks like with squeue:

$ srun -p compute -t 5:00 -c 1 -n 1 sleep 2m &

$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
637797 compute sleep jan-more R 0:03 1 deigo012010

You can format the output in many ways — see the manpage!

Cancel the JOb by JOb ID: Cancel all jObS with name “Sleep”:

$ scancel 637797 $ scancel -n sleep

Cancel all your jobs: Combine: cancel your pending jobs:
$ Scancel -u $USER # these dO the $ scancel -t PENDING -u $USER

$ scancel -u jan-moren # same thing

OIST

Ruse

ruse measures memory, cores and time

« samples data every 10s Example: see details of an SVD calculation:
* saves infoin a “.ruse” file
$ module load ruse $ srun -t 5:00 -c 4 -p short ruse -st1 ./svd.py
$ srun -t 5:00 --mem=1G -p short ruse sleep 1m
- time mem processes process usage
$ cat sleep-30511.ruse (secs) (MB) tot actv (sorted, %CPU)
Time: 00:01:00 1 545.5 7 7 33 16 15 13 2
TS 0.7 MB 2 549.1 7 4 99 98 98 96
Cores: 1 : :
. . 20 1083.6 7 4 88 88 88 88
éigég;;?rocs' 0 21 1121.8 7 4 99 98 98 96
oo 22 1121.7 7 4 99 99 98 95
you can change the sampling rate and T 00:00:23
record change over time: Memory : 1.1 GB
Cores: 4
Total_procs: 7
$ ruse --help Active_procs: 7
e ' Proc(%): 95.9 94.4 93.6 91.7 0.1 0.1 0.1
-s, --steps Print each sample step
-t, --time=SECONDS Sample every SECONDS (defa

OIST

Serial, Shared memory, and MPI jobs

We need three kind of resources:

Cores and nodes
Memory
Time

We have four kinds of jobs:

Node

Core

Core

Core

Core

Aowa

Node

Core

Core

Core

Core

Alows|\

Node

Core

Core

Core

Core

Alowa|\

Serial A single process using a single thread.
Part of an “embarassingly parallel” job.

Shared memory A single process with multiple threads.
Also called multithreaded. Fine-grained parallel.

MPI Multiple processes with a single thread. Coarse-

grained parallel, or distributed.

Hybrid Multiple processes using multiple threads. A

combination of shared memory and MPI.

Serial Job

— single process, single thread Node

Simple data processing tasks,
copying files, some scripts

Simple Python, Matlab programs

Wa

Allocate:

* One process (called “task”)

* One core (called “cpu”) --ntasks -n Number of tasks (processes). Set to 1
* Per-node memory

--cpus-per-task -C Number of cores per task. Setto 1

- -mem Memory per node.

$ srun -p short -t 1:00 --mem=1G -¢c 1 -n 1 ./pi_serial

OIST

Shared memory Job

— single process, multiple threads

Most scientific software.

Numerical Python, Matlab and R programs

Allocate:

* One process

* Multiple cores, up to the
maximum for a node

* Per-node memory

Node

—_—

--ntasks

-n Number of tasks (processes). Setto 1

--cpus-per-task

-C Number of cores per task.

--mem

Memory per node.

$ srun -p short

-t 1:00 --mem=1G -¢ 4 -n 1 ./pi_omp

OIST

Shared memory Job

— single process, multiple threads

Most scientific software.
Numerical Python, Matlab and R programs

Node

Handy tip: If you take all cores in a node, nobody else can use the node

If you ask for all memory, nobody else can use the node

if you can spare a bit of memory and a few cores processes). Set to 1

- high-throughput jobs can use that very efficiently

per task.

Alloca
e Ol

e M
m

- P

--mem

Memory per node.

$ srun -p short -t 1:00 --mem=1G -c 4 -n 1 ./pi_omp

OIST

MPI Job

— Multiple processes, single thread

Scalable scientific software.
Simulators, MD and weather modeling, etc.

Allocate:

 Many processes

Node Node

Core

<
o)
3
o
<

Core

Core

* Single core per process --ntasks

Number of tasks (processes).

* Per-core memory --cpus-per-task

Number of cores per task. Setto 1

--mem-per-cpu

Memory per core.

--mpi=pmix

Make Slurm start the MPI job for us

$ srun -p short --mpi=pmix -t 1:00 --mem-per-cpu=1G -c 1 -n 3 ./pi_mpi

OIST

MPI Job

NOTE: Node Node
Instructions may tell you to use ‘mpirun’, ‘mpiexec’ or similar

Y
You can start MPI programs that way, but there are Core IS Core
problems scheduling them with SLURM. = -

— Use ‘--mpi=pmix’ instead if you can!

--ntasks -n Number of tasks (processes).
--cpus-per-task -C Number of cores per task. Setto 1
--mem-per-cpu Memory per core.

--mpi=pmix Make Slurm start the MPI job for us

$ srun -p short --mpi=pmix -t 1:00 --mem-per-cpu=1G -c 1 -n 3 ./pi_mpi

OIST

Hybrid Job

— Multiple processes, multiple threads

Fastest, most efficient way to run
on very large systems

Allocate:

e processes equal to number of

Node Node Node

—_—

nodes --ntasks

Number of tasks (processes).

e All cores on each node
--cpus-per-task

All cores per node.

* Per-node memory
--mem

Memory per node

--mpi=pmix

Make Slurm start the MPI job for us

$ srun -p short --mpi=pmix -t 1:00 --mem=1G -c 4 -n 3 <some program>

OIST

Batch Jobs

A batch job is a command script that runs a job.
It's a text file with commands.
Compare with srun:

$ srun -p short -t 1:00 --mem=1G -c 1 -n 1 ./pi_serial batch_example.slurm

#!/bin/bash

Tells the system this is a Bash script

#SBATCH -p short
#SBATCH -t 1:00
#SBATCH --mem=1G
#SBATCH -c 1
#SBATCH -n 1

‘# are comments in the bash shell
‘#SBATCH' tells Slurm these are option lines

The commands we want to run

A r—J%

./pi_serial

You run the script with ‘sbatch’: $ sbatch batch_example.slurm
OIST

A

___ﬁé%%é/l/\;/pi_serial
OIST

Batch Jobs

batch script is just a text file.

lines beginning with “4#SBATCH” are job settings, read by SLURM

When your job starts, each line is run as if you typed it on the command line
Everything after “#” are comments and ignored when your job runs

Create and edit with nano (simple) or gedit (graphical):

$ gedit batch_example.slurm

/ Tells the system this is a Bash script
#!/bin/bash

#SBATCH -p short ‘# are comments in the bash shell
#SBATCH -t 1:00 o ¢)

SSBATCH --mem=1G #St'BA-II-'CH tells Slurm these are
#SBATCH -c 1 option lines

#SBATCH -n 1

} The shell commands we want to run

Batch Jobs

Batch jobs are the very best way to run jobs.

Benefits:

* You can submit the job, then log out

- Slurm queues the job, and will
start it when there are resources.

— Slurm can email you when it's done

#!/bin/bash

#SBATCH -p short
#SBATCH -t 1:00
#SBATCH --mem=1G
#SBATCH -c 1
#SBATCH -n 1

./pi_serial

OIST

Batch Jobs

Batch jobs are the very best way to run jobs.

Benefits: #!/bin/bash
* You can submit the job, then log out

- Slurm queues the job, and will #SBATCH -p short

start it when there are resources. ﬁggﬁ$gn -t M?G
- g il hen it's d - -mem=
Slurm can email you when it's done HSBATCH -c 1
 The script is reliable #SBATCH -n 1
- Reuse and resubmit without forgetting any steps or
typing errors ./pi_serial

- keep handy scripts around

OIST

Batch Jobs

Batch jobs are the very best way to run jobs.

Benefits:
You can submit the job, then log out

Slurm queues the job, and will
start it when there are resources.

Slurm can email you when it's done

The script is reliable

Reuse and resubmit without forgetting any steps or
typing errors

keep handy scripts around

It’s a record of your process

OIST

Keep it in git, or store a copy with your results to keep a
record of how you produced it.

#!/bin/bash

#SBATCH -p short
#SBATCH -t 1:00
#SBATCH --mem=1G
#SBATCH -c 1
#SBATCH -n 1

./pi_serial

Batch Jobs

We have some new useful options:

--job-name -J Give your job a name #SBATCH - - job-name=My job
--output -0 File for job output #SBATCH --output=Myjob-%j.out
--error -e File for job error output) .)
#SBATCH --error=Myjob-%j.err
e« --job-name is useful to manage your job
« --output sets the output file name.

- The default ouput file name is “slurm-<job ID number>.out”.
Use ‘%j’ for the job ID, and “%u’ for your user name.

 Normally errors go into the output file. If you set ‘--error’, they go
into a separate error file instead.

Note: Normally you should not use a separate error file. it
makes finding errors more difficult.

OIST

Batch Jobs

Get an email when your job is done:

--mail-user your email address #SBATCH --mail-user=name@oist. jp

* --mail-type sets when Slurm will email you:

BEGIN Your job began running

END Your job finished

FAIL Your job failed for some reason
ALL Any of different events

* --mail-user sets the email address (Only OIST email).

OIST

Batch Jobs

You can put almost any commands in the script:

Rscript.slurm

#!/bin/bash L ,
#SBATCH --partition short Submit with “sbatch
#SBATCH --job-name=R_job $ sbatch Rscript.slurm
#SBATCH --output=R_%j.out

#SBATCH --time=10:00

#SBATCH --mem=2G Check progress with “squeue”:

#SBATCH --ntasks=1 $

#SBATCH --cpus-per-task=1 She LU

woduile lesd B Tip: always put module commands in the
script. That way you never forget to load

echo “stats for 1e8 normal random values:” the modules you need

i module load R
Rscript -e “summary(rnorm(1e8,0,1))”

OIST

Shared memory batch job script

pi_omp.slurm

#!/bin/bash

#SBATCH --partition=short
#SBATCH --job-name=omp_job
#SBATCH --output=omp_%j.out
#SBATCH --time=10:00
#SBATCH --mem=1G

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=8

echo “cores:” $OMP_NUM_THREADS
./pi_omp

Batch Jobs

Shared memory jobs run on a single node.

Set the total memory with --mem.
One node, one task (= one process), but we will
use 8 cores.

The OMP_NUM_THREADS variable contains the
number of cores.

Handy Tip: We can set options on the command
line too. They override the settings in the script file.

So, set default values in the script, then change for
each job.

$ sbatch pi_omp.slurm
$ sbatch -c 1 pi_omp.slurm
$ sbatch -c 16 pi_omp.slurm

OIST

Batch Jobs

MPI batch job script

PlL_mpL.slurm MPI jobs run N copies of the program, each
#!/bin/bash doing part of the job.

#SBATCH --job-name=mpi_job

#SBATCH --partition=short * eight tasks, one core per task.
#SBATCH --output=mpi_%j.out
#SBATCH --time=10:00
#SBATCH --mem-per-cpu=1G * With “--mpi=pmix” we let slurm start and
#SBATCH --ntasks=8 manage our MPI task.

#SBATCH --cpus-per-task=1

» Set the memory per core.

* You can use srun inside a batch job. This is
module load openmpi.gcc/4.0.3 called a job step.

e e We can’t use the “--mpi” option in sbatch itself

so we need to use a job step for mpi jobs.
$ sbatch pi_mpi.slurm Job steps are really useful for lots of things.

OIST

Batch Jobs

MPI batch job script

PlL_mpL.slurm MPI jobs run N copies of the program, each
#!/bin/bash doing part of the job.

#SBATCH --job-name=mpi_job

#SBATCH --partition=short * eight tasks, one core per task.
#SBATCH --output=mpi_%j.out
#SBATCH --time=10:00
#SBATCH --mem-per-cpu=1G * With “--mpi=pmix” we let slurm start and
#SBATCH --ntasks=8 manage our MPI task.

#SBATCH --cpus-per-task=1

» Set the memory per core.

 Sometimes MPI apps won'’t start with Slurm
module load openmpi.gcc/4.0.3

mpirun -np $SLURM_NPROCS ./pi_mpi currently, this includes Intel MPI programs
* You can still use “mpirun” instead

$ sbatch pi_mpi.slurm

OIST

Exercise!

We have a Python program:
svd.py

Make a Slurm batch script
that runs this program

1. Use an editor such as nano or gedit
2. Set at least:

cores memory
running time partition

3. Load the python module

OIST

Tips:

~k
A
A

u
*0
X

M-u

Start Nano like this:

$ nano svd.slurm

no mouse support, but shift+arrows marks
areas

“control” key plus "k" = cut

paste

save

exit

“alt” key plus "u" = undo

OIST

Template batch script:

#!/bin/bash
#SBATCH -p ?2?
#SBATCH -t 2?72
#SBATCH -c 2?72
#SBATCH --mem= ??7?

load python module

run svd.py in current folder

One solution:

Slurm file:
ﬁéé%gébash . * Time, cores and memory are
-p compute ;
#SBATCH -t 10:00 suggestions.
#SBATCH -c 1 > your best guess depends on
#SBATCH --mem=8G what you will be running — use

load python module ruse” to measure It.

module load python/3.7.3 « Always specify the version

run svd.py in current folder when you load a module

./svd.py

OIST

Part 2 (you don't need to do this):
Find the optimal number of cores

1. Change your script:

2. test the run time:

- Load the Ruse module
- Add ruse in front of your program:
ruse ./svd.py

- svd.py is fast, so set the sample time
to 1 second:

ruse -t 1 ./svd.py
- Add "-C epyc" to Slurm settings
#SBATCH -C epyc

1. Run the job with one core

* see how much memory and
time it takes

2. Try with more cores

NOTE: run multiple times for each core
setting

What seems to be the best core
setting for this program?

OIST

The script

Slurm file:

#!/bin/bash
#SBATCH -p compute
#SBATCH -C epyc
#SBATCH -t 10:00
#SBATCH -c 1
#SBATCH --mem=4G

module load python/3.7.3 ruse/2.0

ruse -t 1 ./svd.py

Quickly change the core setting
on the command line:

$ sbatch -c 16 svd.slurm

-C epyc makes sure you use the
AMD CPUs (use "-C xeon" for
intel).

See output with "less" or "cat":

$ cat svd.py-12345.ruse

OIST

Scaling of svd.py

Min value, ten runs each

Execution time over cores

20

15 A

time (s)

1 2 4 8 16 32 64 128
cores

speedup

Speedup by cores (red is ideal)

128 A

64 -

32 A

16 A

1 2 4 8 16 32 64 128
cores

Data Workflow

workflow

* Keep your research data on Bucket
 Start your job from Home or Flash:

1. Read data from Bucket
2. Write data to Flash
3. Copy results back to Bucket

e Clean up: delete all from Flash

e

OIST

Batch Job template for Deigo

job_template.slurm

#!/bin/bash

#SBATCH --partition short
#SBATCH --time=0-1
#SBATCH --mem=20G

#create a temporary directory in Flash
tempdir=$(mktemp -d /flash/MyunitU/myprog.XXXX)
cd $tempdir

#run the job
./pi_serial >output.txt

#copy results to bucket, delete temp dir
scp output.txt deigo:/bucket/MyunitU/
rm -r $tempdir

We read data from Bucket, and save output to
Flash. Finally we save the output and clean up

Create a temporary directory in /flash

* mktemp -d creates a unique directory. XXXX
is replaced with random characters.

» Save the directory name in tempdir

Go to tempdir, then run our code there

* We use scp to copy our results to Bucket

* /bucket is not writeable on compute nodes
* scp copies files over the network

Delete tempdir and everything inside.

OIST

We want your feedback:

https://groups.oist. jp/scs/introduction-hpc-and-scientific-computing

SCDA Open Hours

15:30 — 17:30, Lab 2, room B648

#ig[\,SCi: highsci.oist.jp
S

OIST

Combine Short jobs

Combine multiple short jobs into one

* You are more efficient!
The shorter your jobs, the more you save

* less Slurm activity bursts

Spend time computing, not starting or stopping

* fewer jobs in total
less strain on Slurm

Four 4minjobs | RO | TSN |

One 16min job

my-program

in-01.dat

|

my-program
my-program
my-program
my-program

in-01.dat
in-02.dat
in-03.dat
in-04.dat

~24 min

OIST

Array Jobs

Array jobs run a set of jobs with different parameters.

» option ‘--array’ specifies a list of numbers:

1-10 from1t010(1,2,3,4,5,6,7,8,9, 10)
1,4-6,10 1,410 6,then 10 (1, 4, 5, 6, 10)
0-16:5 every 5th value from 0 to 16 (0, 5, 10, 15)

e Slurm submits your script as one job for each index
* Shell variable SLURM_ARRAY_TASK_ID is set to the current index.
* For --output filenames, %A = job ID; %a = array index.

#!/bin/bash

#SBATCH --partition short
#SBATCH --time=1:00

#SBATCH --array=1-5

#SBATCH --output=arr_%A-%a.out

echo ${SLURM_ARRAY_TASK_ID}

OIST

array_ex 1

Array JObS #1/bin/bash

#SBATCH --job-name ..

We run 5 array jobs. The output is a file arr*out for each job. echo 1

array_example.slurm
array_ex 2

#!/bin/bash

) #SBATCH --job-name ..
#!/bin/bash 5

#SBATCH --job-name=array_ex

#SBATCH --partition short echo 2
#SBATCH --time=10:00
#SBATCH --array=1-5
#SBATCH --output=arr_%A-%a.out
array_ex 5

echo ${SLURM_ARRAY_TASK_ID}
#!/bin/bash

#SBATCH --job-name ..

echo 5

OIST

Remember:

* Do not run compute jobs on the login nodes. That includes interactive programs
such as MATLAB. Use srun and sbatch.

* Always specify the memory and time that you need. And remember, the /ess you
use, the faster your job will get resources.

 Clean up /flash and remove temporary files when you're finished

* Do not submit thousands of long running jobs, or lots of very short jobs. It will
affect the scheduler. If you need to do so, please contact us first.

* Build your programs on an AMD node. Programs built on an Intel node
(including the login nodes) may fail to run on AMD.

* Give us attribution. This gives us the resources we need to provide more storage
and new computing.

OIST

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 25
	Slide 28
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 63
	Slide 65
	Slide 66
	Slide 67
	Slide 71

