HPC and Scientific Computing at OIST

|: Introduction to HPC computing

Jan Moren, SCDA /zm\

OIST

OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY
MR 2 BT EBERE

Part 1

« HPC concepts
* Node, core, storage, filesystem, scheduler, parallelism

 Scientific software for HPC
» Scientific Programming in HPC

http://groups.oist.jp/scs/introduction-hpc-and-scientific-computing-0
SCDA — Documentation — Training, Introduction to Scientific Computing

OIST

http://groups.oist.jp/scs/introduction-hpc-and-scientific-computing-0

Go faster

L N

» problem formulation * multiple cores

* algorithm design * cluster computers

e cache control * GPUs, accellerators
* vector operations * supercomputers

http://groups.oist.jp/scs/introduction-hpc-and-scientific-computing-0
SCDA — Documentation — Training, Introduction to Scientific Computing

OIST

http://groups.oist.jp/scs/introduction-hpc-and-scientific-computing-0

48 Years of Microprocessor Trend Data

. . . . Transistors

(thousands)
107 |- .

10° | .

Single-Thread
105 | 4 Performance
(SpecINT x 103)

104 -

Frequency (MHz)
103 -

Power (Watts)

2 L
10 Number of Cores

101 -

100 L

1970 1980 1990 2000 2010 2020

Year
L~—

OIST 1970-2010 data by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten. 2011-2019 by K. Rupp

48 Years of Microprocessor Trend Data

. . . . =4 Transistors
(thousands)
10? -
106 -
Single-Thread
10° | Performance
(SpecINT x 103)
104 -
Frequency (MHz)
103 -
Power (Watts)
2 L
10 Number of Cores
101 -
100 -
I I I |
1970 1980 1990 2000 2010 2020
Year
L~—

OIST 1970-2010 data by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten. 2011-2019 by K. Rupp

A collection of computers

A — fast internal network
- .
— high-speed storage
I Scheduler — managed by a scheduler
— _ — remote access
High-speed t . .
Sioreie T\] E — used as a single machine
disk . .
. — all running Linux
Compute Compute Compute Login
Node Node Node Node
cru = cru = cru IS login’
(0] (0] D
3 3 3 login2
(@] - o - o
= disk = dISk/ < login3

OIST

HPC clusters

Google data center

Part of the Deigo
cluster at OIST

HPC Concepts

Node: A collection of cores with
shared memory and storage

= one high-spec workstation
128-512G memory, 16-128 cores

Core: cluster computation unit

= One processor core
= one thread of execution

OIST

Memory
CPU CPU
Core Core
S— high-speed
Local network
Storage

HPC Concepts

 Compute Storage

OIST

Distributed into the cluster

Fault-tolerant
e data is stored in multiple storage
nodes

High-speed
e Data is “striped”

Our in-cluster storage is “Flash”
Our Main storage is “Bucket”

Fast network

(Compute nodes)

Metadata
server

Storage

Management
server

HPC Concepts

File System
* High-level view of storage.

Presents a unified view of all storage as a
single file system.

- Just a file system path:
/flash/YourunitU/
/bucket/YourunitU/

* Gives remote access through:

- SMB (bucket): mount as remote folder
- SSH: high speed copies

Fast network

(Compute nodes)

High-speed
Storage

OIST

10

Example: Deigo

Core

Core

Aowapy

Core

—
o
o
@

Node Login

| Node

Core

fowap
Aowap

Core login3

Core loging

-
o
o
@

OIST

SLURM
management
node

Scheduler

SLURM
demon

Compute
Node

[]

SLURM
demon

Compute
Node

[]

SLURM
demon

Compute
Node

[]

OIST

Manages all resources in the cluster:

cores, memory, GPUs etc.

Manages user programs (called
jobs): Schedule start and end times

Cluster administration

We use “SLURM’:

Simple Linux Utility for Resource
Management

13

Scheduler

SLURM
management “ “
node please run| myprog |
i <\:: ‘
SLURM SLURM SLURM
demon demon demon
Compute Compute Compute
Node Node Node
[] [] []

OIST

Run a job:

1. Submit a job request

14

SLURM
management
node

S

Scheduler

/ \
/ SLURM SLURM SLURR
demon demon demon
Compute Compute Compute
Node Node Node
[] [] []
N P
/

Run a job:

1. Submit a job request
2. SLURM finds a set of free

nodes

15

Scheduler

management Run a jOb:

node

1. Submit a job request
2. SLURM finds a set of free

1 4 A\ nodes
“run for user 3. tell demons to start program

\ on nodes

SLURM SLURM SLURM
demon demon demon
Compute Compute Compute
Node Node Node
[myprog] [myprog] [myprog]

OIST

16

SLURM
management
node

NN

* myprog

running*

Scheduler

NN\

SLURM
demon

Compute
Node

[myprog]

SLURM
demon

Compute
Node

[myprog]

SLURM
demon

Compute
Node

[myprog]

OIST

Run a job:

1.
2.

Submit a job request

SLURM finds a set of free
nodes

tell demons to start program
on nodes

Monitor the job, report back

17

SLURM

management
node

Scheduler

“| myprog | is done”
ﬁ

SLURM
demon

Compute
Node

[]

SLURM
demon

Compute
Node

[]

SLURM
demon

Compute
Node

[]

OIST

Run a job:

1.
2.

Submit a job request

SLURM finds a set of free
nodes

tell demons to start program
on nodes

Monitor the job, report back
clean up nodes, inform user

18

SLURM

management
node

Scheduler

ﬁ q

SLURM
demon

Compute
Node

SLURM
demon

Compute
Node

[]

SLURM
demon

Compute
Node

[]

Run a job:

1.
2.

Submit a job request

SLURM finds a set of free
nodes

tell demons to start program
on nodes

Monitor the job, report back
clean up nodes, inform user

19

Scheduling

Fit jobs to resources

Manages cores, memory, GPUs etc.
over time

If resources not available, jobs must
wait until they are

Scheduler decides order of execution

\J

Time

Nodel

|
JobA

Node2

|
JobB

Node3

[|
JobC

Node4

|
JobD

OIST

20

Scheduling

Fit jobs to resources

Criteria:
* when did you submit the job

* how much resources (memory,
cores, time) does your job ask for

* your job history

\J

Time

Nodel

|
JobA

Node2

|
JobB

Node3

[|
JobC

Node4

[|
JobD

OIST

21

Nodel Node2 Node3 Node4

Scheduling |
Example

- Job A asks for some cores

— All cores are free so it starts
immediately

Y = M M u
Time
JobA JobB JobC JobD

OIST

- Job A asks for some cores
- Job B wants fewer cores but more
time

— Still enough free resources so it
starts as well

Scheduling
Example

_V | | [| |
Time
JobA JobB JobC JobD

OIST

Scheduling

Example

- Job A asks for some cores

- Job B wants fewer cores but more
time

- Job C wants all cores in some nodes

— Not enough free cores, so C will
wait until A and B are done

odel

\J

Time

JobA

Node2

i
I

JobB

Node3

JobC

Node4

| “n

JobD

OIST

24

Scheduling

Example

- Job A asks for some cores

- Job B wants fewer cores but more
time

- Job C wants all cores in some nodes

- Job D needs few cores and little time

— Fits in “leftover” resources, and so
it starts before C

\J

Time

Nodel Node2

..‘H

|
JobA JobB

Node3 Node4

[
|

JobC JobD

OIST

25

Scheduling

Take-away message:

Ask for as few resources — memory,
cores, number of jobs — as you can.

Fewer resources

!

earlier start time

!

faster results

\J

Time

Nodel Node2

..‘H

|
JobA JobB

Node3 Node4
JobC JobD

OIST

26

Serial Program

Parallelism

Serial execution:
* A series of operation steps:
- CPU instructions
— Code statements
- Program sections

* One core executes one step in turn
= one thread

 Aprocess or task has one or more threads

27

Serial Program

= '

Parallelism

Parallel Program

I}

Parallel execution:

* Multiple processing cores executes
the steps all at once

[}

28

Embarrassingly Parallel

[coe [coe [coe
* Embarrassingly parallel Coarse-grained Parallel
_ :
fully independent tasks e (] e
e Coarse-grained parallel — ‘ — ‘ —
— separate .tasl_<s with periodic T T
synchronization
° Fine_grained para”el - Fine-grained Parallel -
- shared memory tasks working — S A |
on the same data % FEq
| E |
* (vector parallelization) —— == ——

OIST

Embarrasingly

pa ral |e|
 Each task is fully independent
— Nno need for communication l
» Runs on any hardware, possibly
highly efficient. I — —
 But: Not that many problems are — = =
really truly independent
 Example: guessing a password i e ﬁ

I~

T

OIST

OIST

Coarse-grained
parallel

Distributed: independent tasks, with
occasional data synchronization.

Message-passing (MPI, ZeroMQ)
Process-based

Used between nodes in a network and
cores in a node

Scales to very large systems
Synchronization is a bottleneck

Example: simulation models

I |]
node | | node | node
] [N]
]] I
]]]
]]]
] | |]
N) o r]
node node node

ﬁ S/ % s %

‘

‘

‘

31

Fine-grained
parallel

« Single program with parallel
sections using multiple cores.

e Shared memory: threads
(OpenMP, system threads)

* Fast and low latency, benefits
ordinary computers, easy to use
(OpenMP).

* Limited to shared-memory systems,
difficult to use (system threads)

 Example: almost everything.

\\/\,

OIST

32

Use Parallel Systems

Easiest: Use the tools you already have

Many scientific applications already support fine- or
coarse-grained multiprocessing

— Specialized tools in bioinformatics, geoscience, neuroscience,
hydrodynamics, atmospheric modelling etc.

- General Open Source software: Python, R, Scilab, OpenFOAM...
- Licensed software: Mathematica, Matlab, COMSOL ...

Ask your unit members - they may already have all the software
that you need!

OIST

33

Use Parallel Systems

* Easiest: Use the tools you already have

 Easy: Run multiple copies of your application

- Split your data set, analyze each subset in parallel
— Do simulation parameter search in parallel
- Run the steps of a pipelined analysis as separate processes.

mouseldata —-—————->»
mouse2data - ————->»
mousel00data —————-—>»

OIST

Use Parallel Systems

* Easiest: Use the tools you already have
 Easy: Run multiple copies of your application

* But perhaps you have to write
your own programs...

OIST

35

Use Parallel Systems

* Easiest: Use the tools you already have

 Easy: Run multiple copies of your application

* But perhaps you have to write
your own programs...

Most of You Do Not!

The next section is only background
information for most users

OIST

36

Dynamic languages

Python, Matlab, R, Bash, ...
High level, lets you express ideas directly
Development is fast

But slow execution time, limited scope for parallelization,
very little for performance tuning.

great for one-off applications, gluing applications together,
data post-processing and data management

Good libraries greatly speed up critical code

OIST

37

Compiled languages

C, C++, Fortran
Low level, gives you complete control
The code is fast, can become very fast with extensive tuning

Learning curve is steep, development is slow, error prone.

great for libraries, big applications where there will be many
users over long time. Necessary for supercomputers.

Libraries abstract away the trickiest parts, makes
development easier.

OIST

38

HPC languages

Dynamic languages:
- High level
- Slow but easy to use

Compiled languages:

- Low level
— Fast but difficult to use

Use libraries!

- Makes high-level languages faster
- Makes low-level languages easier

OIST

39

Parallelization Example

 Compute this approximation of Tt: =~ nh

A serial C program:

long int N=1e10;
double sum=0.0, dx=1.0/N;

for (long int i = N; i >=1; i--) {
double x = dx *x (i - 0.5);
sum += 4.0 / (1.0 + x*x);

}

sum = sum * dx;

Runtime on Deigo = 15.00 s for N=10"° elements

N 4

B —

i 1+ h? (i

1
N

2
2)

7 =
S =
5 =1/N|

noes

=3 D)

OIST

40

Using OpenMP

long int N=1e10;
double sum=0.0, dx=1.0/N;

#pragma omp parallel for reduction(+:sum)
for (long int i = N; 1 >=1; i--) {
double x = dx * (i - 0.5);
sum += 4.0 / (1.0 + x*x);
}

sum = sum * dx;

Runtime on Deigo = 1.9 s for N=10"° with 8 threads

Split the for-loop into
mutliple threads, then do a
final sum (a “reduction”) of
the partial values:

split array into
8 pieces a1-a8

'

start 8 partial
loops in parallel

.

N

sum(a1l) sum(a2)

sum(a8)

combine (“reduce”)
the partial results

45%%/7;8 times speedup
OIST

41

Using MPI

double dx, psum=0.0, sum=0.0;
long int kh, N=1e10;

MPI_Comm_size(MPI_COMM_WORLD,&m);
MPI_Comm_rank (MPI_COMM_WORLD,&r);

n b

kh = (r ==m=-1) 2N : (r+1)*n;

dx = 1.0 / N;

for (long int i=kh; i>=r*n+1; i--) {

double x = dx * (i - 0.5);
psum += 4.0/(1.0 + x*x);
3

MPI_Reduce(&psum, &sum, 1, MPI_DOUBLE, MPI_SUM,

@, MPI_COMM_WORLD);
if (r == 0)
sum = sum * dx;

Runtime on Sango = 1.9 s for N=10"° with 8 threads

Distribute the for-loop over
different processes, then do
a final reduction:

split array into
8 pieces a1-a8

'

start 8 partial
loops in parallel

R

sum(a1) sum(a2) | === | sum(a8)

N

combine (“reduce”)
the partial results

45%”/7;8 times speedup
OIST

42

Scaling Limits
— or, why we can never have any fun

We want perfect scaling

Double the cores =
double the speed =
half the time taken

10

Processing cores

100

1000

43

Scaling Limits

— or, why we can never have any fun

Speedup

Amdahl's Law (strong scaling)
1
(1-p)+p/n’

n = processes,
p = parallel proportion

S(n)=

| 95% |

95%

I
1

10 100 1000

Processing cores

Some operations
do not scale:

* |load/save data
* synchronization

Those parts remain,
even if the rest goes
infinitely fast

— sets upper limit
on scaling.

OIST

44

20

Scaling Limits

— or, why we can never have any fun

10

Processing cores

100

1000

Some operations
do not scale:

* |load/save data
* synchronization

Those parts remain,
even if the rest goes
infinitely fast

— sets upper limit
on scaling.

45

Scaling Limits

— or, why can we never have any fun?

710 - Qe

Grim reality (“Gunther’s law”)

1 10 100 1000

Some operations slow
down with more cores:

load/save data
synchronization

at some point,
adding cores
start

slowing you down.

% Processing cores
OIST

46

Don’t ask
First ask

Performance improvements
are a time sink

“How do | make this faster?”
“Isn’t this already fast enough?”

Don’t lose more time improving
your program than you gain
when running it.

OIST

Performance improvements
have future costs

your program is harder to read
and understand — for others,
and for your own future self.

Great scalability on one system

might be bad on a different one.

47

Part 2

e HPC resources and infrastructure at OIST

— Overview of OIST HPC resources
— HPC clusters infrastructure
- SLURM (components, concepts, partition, commands)

* Getting started with HPC at OIST

- Accounts
- Use the cluster
- Best Practices

OIST

48

Scientific Computing and
Data Analysis Section

Online Documentation: ‘ ’
https://groups.oist.jp/scs/documentation :"{"Lg A,s C’L
Contact us for help: https://highsci.oist.jp

ask-scda@oist.jp

Open Hours every day 15:30-17:30

OIST 49

mailto:ask-scda@oist.jp

SCDA Open Hours

Every weekday between 15:30 and 17:30

Lab 2, room B6438
Zoom: https://oist.zoom.us/j/593265965

Come talk to us about

— How to build or run your programs
on the clusters

- Installing programs on the clusters
- Programming issues

— Problems with Deigo or Saion

- Anything else!

Okay, sir,
again have
you tried
7] turning the

Overview of HPC resources at OIST

/flash

/bucket

Backup and
archive

51

14 x Intel Xeon

36 cores
768 GB

1 x Intel Xeon
32 cores
3072 GB

192 x Intel Xeon

4 x Intel Xeon

E

login nodes

WV,

Open Partitions

short - 66532 cores
4000 cores, 2 hours, 6.5 TB

compute - 45568 cores
2000 cores, 4 days, 7.5TB

Restricted Partitions
largemem - 2424 cores
5 nodes, — days
bigmem - 32 cores
8 cores, — days

Special Partition

largejob - 12800 cores
(managed by SCC)

Saion

- GPU)
8xIntel, 4xNVIDIA V100
8xIntel, 4xNVIDIA P100

- LargeGPU \ deep learning,
4xAMD, 8xNVIDIA A100 80GB image analysis

e Powernv
2x|BM P9, 4xNVIDIA P100

6xIBM P8, 4xNVIDIA V100)
* kofugaku

ngFujitsu AB4Tx } Fugaku ARM test system
« test-GPU

6xintel, 4xV100

. intel open partitions, general use

4xIntel (40 cores)

OIST

53

Storage

Flash

Work

Bucket

Home

Apps

Access

/flash/<unitname>

/work/<unitname>

/bucket/<unitname>

/home/<>/<user-id>

/apps/<unit>

Storage

Purpose
Running jobs on Deigo

Running jobs on Saion

Long term storage:

- Unit shared files
- final datasets

Your work: papers, configuration

files, source code, etc.

Unit-specific software

Size

10TB/Unit

10TB/Unit

50TB/Unit +

50GB/user

50GB/Unit

Backup
No

No

Yes

No

No

OIST

54

Attribution

Scientific attribution and co-authorship rules apply to
research support sections, including SCDA

e If you used our systems for your research, we
require acknowledgement

* |f we took an active part in the research process,
we require co-authorship

Why?

We are evaluated on our research contributions
more attributions — more funding — more computing for you!

https://groups.oist. jp/scs/attribution

95

SCDA Members

Eddy Taillefer

Pavel Puchenkov

Jan Moren

OIST

56

Part 3

Let’s log in to Deigo and try running a job

— Deigo is our main cluster
— You need to apply to get access:

https://groups.oist.jp/scs/request-access

Click “Open Resources”, then “Submit”
(you can tell us something if you feel like it)

OIST

57

https://groups.oist.jp/scs/request-access

Set Up SSH

* Any OIST member can use the HPC resources. Apply here:

- https://groups.oist. jp/scs/request-access
Select “Open Resources”

« OSX Users
- You should already have SSH
- Install “XQuartz” for graphics (reboot after installation)

* Windows Users

- Install free “MobaXTerm”. Can use SSH and graphical applications.

 Linux and BSD Users
- You already have everything.
https://groups.oist. jp/scs/connect-clusters

OIST

58

Download the slides and examples

Go to:
http://groups.oist.jp/scs/introduction-hpc-and-scientific-computing-0

Or SCDA page — Documentation — Training, Introduction
to Scientific Computing

Download the PDF instructions and/or the zip file.

OIST

59

http://groups.oist.jp/scs/introduction-hpc-and-scientific-computing-0

Let's Log In

Log in to Deigo:

$ ssh -X <your-id>@deigo.oist.jp

copy the slides, example scripts and
programs to your home:

$ cp -r /apps/share/training/Intro .

Handy Tip: Avoid typing with tab completion:

$ cp -r /a<tab>/sh<tab>/t<tab>/I<tab> .

R

Press the tab key to fill in the name

Press once to fill in unique parts. Press twice to see
matching alternatives. This works with directories,
files, programs and parameters.

Later, please go through "Getting Started” and “Connecting
to the Clusters” pages in the documentation

OIST

60

Modules

Many standard programs are installed on the system. Specific
applications and versions are provided through modules.

$ module av # list available modules. Also ‘ml av’ ° “module” and “ml” both WOFk,

but “ml” is faster to type
-------------------------------- /apps/.metamodules81 ----------------------

amd-modules (L) intel-modules sango-legacy-modules user-modules ° metamodules are collections

of related modules
-------------------------------- /apps/.modulefiles81 ----------------------

BUSCO/4.1.2 (D) cmake/3.18.1 matlab/R2019a (D) (L) is currently loaded
Gaussian/0Q9REQ1R2 comsol/52 metabat/2.12.1] .
e (D) is the default version

$ module load BUSCO0/4.1.2 # load BUSCO for use. Also ‘ml BUSCO/4.1.2’°

$ module 1i # list loaded modules. Also ‘ml’ .
' ’ ml help .. show module info
Currently Loaded Modules: ml help show help
1) singularity/3.5.2 2) BUSCO/4.1.2 ml key Searches keywords
$ module purge # remove all loaded modules. Also ‘ml purge’ ml save save list of mods

ml restore restore list of mods
OIST 61

Use srun

amount of memory

/

$ srun -p short -t 01:00 -n 1 -c 1 --mem=10G ./pi_serial

f time’zrun / number of cores \

partition number of processes command

Use srun for quick jobs:

srun

ssh

compute

OIST

62

Use srun

amount of memory

/

$ srun -p short -t 01:00 -n 1 -¢c 1 --mem=10G ./pi_serial

f time’zrun / number of cores \

partition number of processes command

Use srun for quick jobs:

ssh

compute

Run interactive commands such as ipython, R, matlab and so

on, on the cluster:
interactive app

$ srun -p short -t 0-1 -c¢ 8 --x11 --pty bash

- srun
$ module load gnuplot) o

$ gnuplot \ graphical app

Now we are on a compute node.

g%’%gy)/v Treat as your own personal workstation
OIST

OIST

Best Practices

Keep permanent data in /bucket/<unitU>

Keep personal configuration files and programs
in your /home

programs can go in /apps/unit/<unitU>

/bucket is read-only from the computing nodes.
Read data from /bucket, write to /flash/<unitU>

Run your jobs from /flash or /home. Do not save
anything into /home.

At the end, copy results from /flash to /bucket,
then delete everything from /flash.

Give us attribution. That gives us more money,
and that gives you new clusters.

Do not run compute jobs on the login
nodes. That includes interactive
programs such as MATLAB. Use srun
and sbatch.

Always specify the memory and time
that you need.

Remove temporary data generated
by your computation.

Do not submit thousands of jobs at
the same time. It can disrupt other
users, and your own future jobs get
lower priority.

64

We want your feedback:

https://groups.oist. jp/scs/introduction-hpc-and-scientific-computing

SCDA Open Hours

15:30 — 17:30, Lab 2, room B648

#ig[\,SCi: highsci.oist.jp
S

OIST

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

