
HPC and Scientific Computing at OIST
I: Introduction to HPC computing

Jan Moren, SCDA

2

Part 1

● HPC concepts
● Node, core, storage, filesystem, scheduler, parallelism

● Scientific software for HPC
● Scientific Programming in HPC

http://groups.oist.jp/scs/introduction-hpc-and-scientific-computing-0
SCDA → Documentation → Training, Introduction to Scientific Computing

http://groups.oist.jp/scs/introduction-hpc-and-scientific-computing-0

3

http://groups.oist.jp/scs/introduction-hpc-and-scientific-computing-0
SCDA → Documentation → Training, Introduction to Scientific Computing

Go faster

Speed up
your code

Use more
computers!

● problem formulation
● algorithm design
● cache control
● vector operations

● multiple cores
● cluster computers
● GPUs, accellerators
● supercomputers

http://groups.oist.jp/scs/introduction-hpc-and-scientific-computing-0

41970-2010 data by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten. 2011-2019 by K. Rupp

51970-2010 data by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten. 2011-2019 by K. Rupp

6

Cluster

Login
Node

login1

High-speed
Storage

login2

login3

Compute
Node

CPU

M
em

ory

disk

Compute
Node

CPU

M
em

ory

disk

Compute
Node

CPU

M
em

ory

disk

Scheduler

CPU M
em

ory

disk

A collection of computers
― fast internal network
― high-speed storage
― managed by a scheduler
― remote access
― used as a single machine
― all running Linux

7

HPC clusters

Google data center

Part of the Deigo
cluster at OIST

8

HPC Concepts

= one high-spec workstation

 128-512G memory, 16-128 cores

Node: A collection of cores with
shared memory and storage

Core: cluster computation unit
= one processor core
= one thread of execution

CPU

Core

Core

Core

Core

Memory

CPU

Core

Core

Core

Core

Local
Storage

high-speed
network

9

HPC Concepts

Metadata
server

Management
server

OSS 1

OSS 2

OSS 3

OSS N

Storage
devices

Fast network

(Compute nodes)
● Compute Storage

– Distributed into the cluster

– Fault-tolerant
● data is stored in multiple storage

nodes

– High-speed
● Data is “striped”

– Our in-cluster storage is “Flash”
– Our Main storage is “Bucket”

10

HPC Concepts

File System
● High-level view of storage.

Presents a unified view of all storage as a
single file system.

– Just a file system path:

/flash/YourunitU/
/bucket/YourunitU/

● Gives remote access through:

– SMB (bucket): mount as remote folder
– SSH: high speed copies

12

Example: Deigo

13

Scheduler
– Manages all resources in the cluster:

cores, memory, GPUs etc.

– Manages user programs (called
jobs): Schedule start and end times

– Cluster administration

We use “SLURM”:

Simple Linux Utility for Resource
Management

SLURM
management

node

DB

[]

SLURM
demon

Compute
Node

[]

SLURM
demon

Compute
Node

[]

SLURM
demon

Compute
Node

14

Scheduler
SLURM

management
node

DB

[]

SLURM
demon

Compute
Node

[]

SLURM
demon

Compute
Node

[]

SLURM
demon

Compute
Node

Run a job:

1. Submit a job request
“please run “myprog

15

Scheduler
SLURM

management
node

DB

[]

SLURM
demon

Compute
Node

[]

SLURM
demon

Compute
Node

[]

SLURM
demon

Compute
Node

Run a job:

1. Submit a job request

2. SLURM finds a set of free
nodes

16

Scheduler
SLURM

management
node

DB

[]

SLURM
demon

Compute
Node

[]

SLURM
demon

Compute
Node

[]

SLURM
demon

Compute
Node

Run a job:

1. Submit a job request

2. SLURM finds a set of free
nodes

3. tell demons to start program
on nodes

“run for user“myprog

myprog myprog myprog

17

Scheduler
SLURM

management
node

DB

[]

SLURM
demon

Compute
Node

[]

SLURM
demon

Compute
Node

[]

SLURM
demon

Compute
Node

Run a job:

1. Submit a job request

2. SLURM finds a set of free
nodes

3. tell demons to start program
on nodes

4. Monitor the job, report back

“ : running“myprog

[]myprog myprogmyprog

18

Scheduler
SLURM

management
node

DB

[]

SLURM
demon

Compute
Node

[]

SLURM
demon

Compute
Node

[]

SLURM
demon

Compute
Node

Run a job:

1. Submit a job request

2. SLURM finds a set of free
nodes

3. tell demons to start program
on nodes

4. Monitor the job, report back

5. clean up nodes, inform user

“ is done“myprog

19

Scheduler
SLURM

management
node

DB

[]

SLURM
demon

Compute
Node

[]

SLURM
demon

Compute
Node

[]

SLURM
demon

Compute
Node

Run a job:

1. Submit a job request

2. SLURM finds a set of free
nodes

3. tell demons to start program
on nodes

4. Monitor the job, report back

5. clean up nodes, inform user

20

Scheduling
Node1 Node2 Node3 Node4

Time
JobA JobB JobD

● Fit jobs to resources
– Manages cores, memory, GPUs etc.

over time
– If resources not available, jobs must

wait until they are
– Scheduler decides order of execution

JobC

21

Scheduling
Node1 Node2 Node3 Node4

Time

● Fit jobs to resources
– Manages cores, memory, GPUs etc.

over time
– If resources not available, jobs must

wait until they are
– Scheduler decides order of execution

Criteria:
● when did you submit the job
● how much resources (memory,

cores, time) does your job ask for
● your job history

JobA JobB JobDJobC

22

Scheduling
Node1 Node2 Node3 Node4

Time

Example
– Job A asks for some cores

→ All cores are free so it starts
immediately

JobA JobB JobDJobC

23

Scheduling

Time

Example
– Job A asks for some cores
– Job B wants fewer cores but more

time

→ Still enough free resources so it
starts as well

Node1 Node2 Node3 Node4

Time
JobA JobB JobDJobC

24

Scheduling

Example
– Job A asks for some cores
– Job B wants fewer cores but more

time
– Job C wants all cores in some nodes

→ Not enough free cores, so C will
wait until A and B are done

Node1 Node2 Node3 Node4

Time
JobA JobB JobDJobC

25

Scheduling

Example
– Job A asks for some cores
– Job B wants fewer cores but more

time
– Job C wants all cores in some nodes
– Job D needs few cores and little time

→ Fits in “leftover” resources, and so
it starts before C

Node1 Node2 Node3 Node4

Time
JobA JobB JobDJobC

26

Scheduling
Node1 Node2 Node3 Node4

Time

Take-away message:

Ask for as few resources — memory,
cores, number of jobs — as you can.

Fewer resources
↓

earlier start time
↓

faster results

JobA JobB JobDJobC

27

Parallelism

Step 1

Step 2

Step 4

Step 3

Step 5

Time

...

Core Serial execution:
● A series of operation steps:

– CPU instructions
– Code statements
– Program sections

● One core executes one step in turn
= one thread

● A process or task has one or more threads

Serial Program

28

Parallelism

Step 1

Step 2

Step 4

Step 3

Step 5

Time

...

Core

Serial Program

Parallel execution:
● Multiple processing cores executes

the steps all at once

Step 1

Core 1

Step 2

Core 2

Step 1

Core 1

Step 3

Core 3

Step 4

Core 4

Step 5

Core 5

Parallel Program

29

nodenodenodenode

Embarrassingly Parallel

Coarse-grained Parallel

Fine-grained Parallel

core core core

core

memory memory memory

memory
core

memory
core

memory

core

memory

core core

node

Three types:
● Embarrassingly parallel

– fully independent tasks

● Coarse-grained parallel
– separate tasks with periodic

synchronization

● Fine-grained parallel
– shared memory tasks working

on the same data

● (vector parallelization)

Parallelism

30

Embarrasingly
parallel core core core

memory memory memory

core core core
memory memory memory

● Each task is fully independent

→ no need for communication

● Runs on any hardware, possibly
highly efficient.

● But: Not that many problems are
really truly independent

● Example: guessing a password

31

Coarse-grained
parallel

nodenodenode

core
memory

core
memory

core
memory

nodenodenode

core
memory

core
memory

core
memory

● Distributed: independent tasks, with
occasional data synchronization.

● Message-passing (MPI, ZeroMQ)

● Process-based

● Used between nodes in a network and
cores in a node

● Scales to very large systems

● Synchronization is a bottleneck

● Example: simulation models

32

Fine-grained
parallel core

memory

core core

node

core

memory

core core

node

● Single program with parallel
sections using multiple cores.

● Shared memory: threads
(OpenMP, system threads)

● Fast and low latency, benefits
ordinary computers, easy to use
(OpenMP).

● Limited to shared-memory systems,
difficult to use (system threads)

● Example: almost everything.

33

Use Parallel Systems
● Easiest: Use the tools you already have

Many scientific applications already support fine- or
coarse-grained multiprocessing

– Specialized tools in bioinformatics, geoscience, neuroscience,
hydrodynamics, atmospheric modelling etc.

– General Open Source software: Python, R, Scilab, OpenFOAM...
– Licensed software: Mathematica, Matlab, COMSOL ...

Ask your unit members - they may already have all the software
that you need!

34

Use Parallel Systems
● Easiest: Use the tools you already have

● Easy: Run multiple copies of your application

– Split your data set, analyze each subset in parallel
– Do simulation parameter search in parallel
– Run the steps of a pipelined analysis as separate processes.

mouse1 data

mouse2 data

mouse100 data

…

35

Use Parallel Systems

● Easiest: Use the tools you already have

● Easy: Run multiple copies of your application

● But perhaps you have to write
your own programs...

36

Use Parallel Systems

● Easiest: Use the tools you already have

● Easy: Run multiple copies of your application

● But perhaps you have to write
your own programs...

Most of You Do Not!
The next section is only background

information for most users

37

Dynamic languages

– Python, Matlab, R, Bash, …
– High level, lets you express ideas directly
– Development is fast

– But slow execution time, limited scope for parallelization,
very little for performance tuning.

– great for one-off applications, gluing applications together,
data post-processing and data management

– Good libraries greatly speed up critical code

38

Compiled languages

– C, C++, Fortran
– Low level, gives you complete control
– The code is fast, can become very fast with extensive tuning

– Learning curve is steep, development is slow, error prone.

– great for libraries, big applications where there will be many
users over long time. Necessary for supercomputers.

– Libraries abstract away the trickiest parts, makes
development easier.

39

HPC languages

Dynamic languages:
– High level
– Slow but easy to use

Compiled languages:
– Low level
– Fast but difficult to use

Use libraries!
– Makes high-level languages faster
– Makes low-level languages easier

40

Parallelization Example
● Compute this approximation of π:

long int N=1e10;
double sum=0.0, dx=1.0/N;

for (long int i = N; i >= 1; i--) {
 double x = dx * (i - 0.5);
 sum += 4.0 / (1.0 + x*x);
}

sum = sum * dx;

yesno

A serial C program:

Runtime on Deigo = 15.00 s for N=1010 elements

41

Using OpenMP Split the for-loop into
mutliple threads, then do a
final sum (a “reduction”) of
the partial values:

Runtime on Deigo = 1.9 s for N=1010 with 8 threads

7.8 times speedup

long int N=1e10;
double sum=0.0, dx=1.0/N;

#pragma omp parallel for reduction(+:sum)
for (long int i = N; i >= 1; i--) {
 double x = dx * (i - 0.5);
 sum += 4.0 / (1.0 + x*x);
}

sum = sum * dx;

start 8 partial
loops in parallel

sum(a1) sum(a2) sum(a8)...

split array into
8 pieces a1-a8

combine (“reduce”)
the partial results

42

Using MPI Distribute the for-loop over
different processes, then do
a final reduction:

Runtime on Sango = 1.9 s for N=1010 with 8 threads

7.8 times speedup

start 8 partial
loops in parallel

sum(a1) sum(a2) sum(a8)...

split array into
8 pieces a1-a8

combine (“reduce”)
the partial results

double dx, psum=0.0, sum=0.0;
long int kh, N=1e10;

MPI_Comm_size(MPI_COMM_WORLD,&m);
MPI_Comm_rank(MPI_COMM_WORLD,&r);

n = N / m;
kh = (r == m – 1) ? N : (r+1)*n;
dx = 1.0 / N;
for (long int i=kh; i>=r*n+1; i--) {
 double x = dx * (i - 0.5);
 psum += 4.0/(1.0 + x*x);
}

MPI_Reduce(&psum, &sum, 1, MPI_DOUBLE, MPI_SUM,
 0, MPI_COMM_WORLD);
if (r == 0)
 sum = sum * dx;

43

Scaling Limits
— or, why we can never have any fun

1
1

10 100 1000

10 Fe
rv

en
t w

is
h

Processing cores

S
p

e
e

d
u

p

We want perfect scaling

 Double the cores =

 double the speed =

 half the time taken

44

Scaling Limits
— or, why we can never have any fun

1
1

10 100 1000

10 Fe
rv

en
t w

is
h

Processing cores

S
p

e
e

d
u

p

Amdahl’s Law (strong scaling)

S(n)= 1
(1−p)+ p /n

,

n = processes,
p = parallel proportion

95%

95%

Some operations
do not scale:
● load/save data
● synchronization
● ...

 Those parts remain,
 even if the rest goes
 infinitely fast

→ sets upper limit
 on scaling.

45

Scaling Limits
— or, why we can never have any fun

Fe
rv

en
t w

is
h

Processing cores

S
p

e
e

d
u

p

1
1

10 100 1000

10

20
Amdahl’s Law Some operations

do not scale:
● load/save data
● synchronization
● ...

 Those parts remain,
 even if the rest goes
 infinitely fast

→ sets upper limit
 on scaling.

46

Scaling Limits
— or, why can we never have any fun?

Fe
rv

en
t w

is
h

Processing cores

S
p

e
e

d
u

p

Amdahl’s Law

1
1

10 100 1000

10

20

Grim reality (“Gunther’s law”)

Some operations slow
down with more cores:
● load/save data
● synchronization
● ...

at some point,
adding cores

start

slowing you down.

47

Should you HPC?

Don’t ask
First ask

Performance improvements
are a time sink

Don’t lose more time improving
your program than you gain
when running it.

Performance improvements
have future costs

your program is harder to read
and understand — for others,
and for your own future self.

Great scalability on one system
might be bad on a different one.

“How do I make this faster?”
“Isn’t this already fast enough?”

48

Part 2
● HPC resources and infrastructure at OIST

– Overview of OIST HPC resources
– HPC clusters infrastructure
– SLURM (components, concepts, partition, commands)

● Getting started with HPC at OIST
– Accounts
– Use the cluster
– Best Practices

49

Scientific Computing and
Data Analysis Section

Online Documentation:
https://groups.oist.jp/scs/documentation

Contact us for help:
ask-scda@oist.jp

Open Hours every day 15:30-17:30

https://highsci.oist.jp

mailto:ask-scda@oist.jp

50

SCDA Open Hours

Come talk to us about
– How to build or run your programs

on the clusters
– Installing programs on the clusters
– Programming issues
– Problems with Deigo or Saion
– Anything else!

Every weekday between 15:30 and 17:30
Lab 2, room B648
Zoom: https://oist.zoom.us/j/593265965

51

Overview of HPC resources at OIST

Saion/work

Deigo
/flash

/bucket
Backup and

archive

/home

52

short - 66532 cores
4000 cores, 2 hours, 6.5 TB

compute - 45568 cores
2000 cores, 4 days, 7.5 TB

largemem - 2424 cores
5 nodes, — days

bigmem - 32 cores
8 cores, — days

largejob - 12800 cores
(managed by SCC)

Open Partitions

Restricted Partitions

Special Partition

53

Saion
● GPU

 8×Intel, 4xNVIDIA V100
8×Intel, 4×NVIDIA P100

● LargeGPU
4×AMD, 8×NVIDIA A100 80GB

● Powernv
2×IBM P9, 4×NVIDIA P100
6×IBM P8, 4×NVIDIA V100

● kofugaku
8×Fujitsu A64fx

● test-GPU
6×intel, 4×V100

● intel
4×Intel (40 cores)

deep learning,
image analysis

open partitions, general use

Fugaku ARM test system

54

Storage
Storage Access Purpose Size Backup

Flash /flash/<unitname> Running jobs on Deigo 10TB/Unit No

Work /work/<unitname> Running jobs on Saion 10TB/Unit No

Bucket /bucket/<unitname>
Long term storage:

- Unit shared files
- final datasets

50TB/Unit + Yes

Home /home/<>/<user-id> Your work: papers, configuration
files, source code, etc. 50GB/user No

Apps /apps/<unit> Unit-specific software 50GB/Unit No

55

Attribution
Scientific attribution and co-authorship rules apply to
research support sections, including SCDA

● If you used our systems for your research, we
require acknowledgement

● If we took an active part in the research process,
we require co-authorship

Why?
We are evaluated on our research contributions

more attributions → more funding → more computing for you!

https://groups.oist.jp/scs/attribution

56

SCDA Members

Ami Chinen

Wayd Howell

Sheng Jheng

Eddy Taillefer

Pavel Puchenkov

Jan Moren

57

Part 3

Let’s log in to Deigo and try running a job
– Deigo is our main cluster
– You need to apply to get access:

https://groups.oist.jp/scs/request-access
Click “Open Resources”, then “Submit”
(you can tell us something if you feel like it)

https://groups.oist.jp/scs/request-access

58

Set Up SSH
● Any OIST member can use the HPC resources. Apply here:

– https://groups.oist.jp/scs/request-access
Select “Open Resources”

● OSX Users
– You should already have SSH
– Install “XQuartz” for graphics (reboot after installation)

● Windows Users
– Install free “MobaXTerm”. Can use SSH and graphical applications.

● Linux and BSD Users
– You already have everything.

https://groups.oist.jp/scs/connect-clusters

59

Download the slides and examples

Go to:
http://groups.oist.jp/scs/introduction-hpc-and-scientific-computing-0

Or SCDA page → Documentation → Training, Introduction
to Scientific Computing

Download the PDF instructions and/or the zip file.

http://groups.oist.jp/scs/introduction-hpc-and-scientific-computing-0

60

Let’s Log In

Log in to Deigo:

 $ ssh -X <your-id>@deigo.oist.jp

copy the slides, example scripts and
programs to your home:

 $ cp -r /apps/share/training/Intro .

Handy Tip: Avoid typing with tab completion:

Press once to fill in unique parts. Press twice to see
matching alternatives. This works with directories,
files, programs and parameters.

$ cp -r /a<tab>/sh<tab>/t<tab>/I<tab> .

Press the tab key to fill in the name

Later, please go through ”Getting Started” and “Connecting
to the Clusters” pages in the documentation

61

Modules
Many standard programs are installed on the system. Specific
applications and versions are provided through modules.

$ module av # list available modules. Also ‘ml av’

-------------------------------- /apps/.metamodules81 ----------------------
 amd-modules (L) intel-modules sango-legacy-modules user-modules

-------------------------------- /apps/.modulefiles81 ----------------------
 BUSCO/4.1.2 (D) cmake/3.18.1 matlab/R2019a (D)
 Gaussian/09RE01R2 comsol/52 metabat/2.12.1
…
$ module load BUSCO/4.1.2 # load BUSCO for use. Also ‘ml BUSCO/4.1.2’
$ module li # list loaded modules. Also ‘ml’

Currently Loaded Modules:
 1) singularity/3.5.2 2) BUSCO/4.1.2

$ module purge # remove all loaded modules. Also ‘ml purge’

● “module” and “ml” both work,
but “ml” is faster to type

● metamodules are collections
of related modules

● (L) is currently loaded

● (D) is the default version

ml help … show module info
ml help show help
ml key … searches keywords
ml save save list of mods
ml restore restore list of mods

62

Use srun

Use srun for quick jobs:

$ srun -p short -t 01:00 -n 1 -c 1 --mem=10G ./pi_serial

time to run
number of processes

number of cores

amount of memory

command

login compute

ssh

srun

partition

63

Use srun

Use srun for quick jobs:

$ srun -p short -t 01:00 -n 1 -c 1 --mem=10G ./pi_serial

time to run
number of processes

Run interactive commands such as ipython, R, matlab and so
on, on the cluster:

$ srun -p short -t 0-1 -c 8 --x11 --pty bash
…
$ module load gnuplot
$ gnuplot

Now we are on a compute node.
Treat as your own personal workstation

number of cores

amount of memory

command

login compute

ssh

srun

partition

graphical app

interactive app

64

Best Practices
● Keep permanent data in /bucket/<unitU>

● Keep personal configuration files and programs
in your /home

● programs can go in /apps/unit/<unitU>

● /bucket is read-only from the computing nodes.
Read data from /bucket, write to /flash/<unitU>

● Run your jobs from /flash or /home. Do not save
anything into /home.

● At the end, copy results from /flash to /bucket,
then delete everything from /flash.

● Give us attribution. That gives us more money,
and that gives you new clusters.

Do not run compute jobs on the login
nodes. That includes interactive
programs such as MATLAB. Use srun
and sbatch.

Always specify the memory and time
that you need.

Remove temporary data generated
by your computation.

Do not submit thousands of jobs at
the same time. It can disrupt other
users, and your own future jobs get
lower priority.

SCDA Open Hours

We want your feedback:
https://groups.oist.jp/scs/introduction-hpc-and-scientific-computing

15:30 — 17:30, Lab 2, room B648

: highsci.oist.jp

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

